
Lidar Toolbox™
Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Lidar Toolbox™ Reference
© COPYRIGHT 2020–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 2.0 (R2021b)
March 2022 Online only Revised for Version 2.1 (R2022a)
September 2022 Online only Revised for Version 2.2 (R2022b)
March 2023 Online only Revised for Version 2.3 (R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Objects
2

Functions
3

Blocks
4

iii

Contents

Apps

1

Lidar Labeler
Label ground truth data in lidar point clouds

Description
The Lidar Labeler app enables you to label objects in a point cloud or a point cloud sequence. The
app reads point cloud data from PLY, PCAP, LAS, LAZ, ROS and PCD files. Using the app, you can:

• Define cuboid region of interest (ROI), line, voxel ROI labels, and scene labels. Use them to
interactively label your ground truth data.

• Define attributes for the labels and use them to provide further detail about the labels.
• Use built-in algorithms for clustering, ground plane segmentation, automated labeling, and

tracking.
• Save label definitions, point cloud data, and ground truth data to a session file for future use.
• Use the Projected View option to view the labels in top, front and side views simultaneously.
• Use the Camera View option to create and reuse custom views of the point cloud data.
• Use the Auto Align option to rotate and best fit the cuboid to the cluster.
• Use the lidar.syncImageViewer.SyncImageViewer class to sync the app to an external

visualization or analysis tool.
• Write, import, and use a custom automation algorithm for automated labeling.
• Evaluate the performance of your label automation algorithms with a visual summary.
• Export the labeled ground truth as a groundTruthLidar object. This object can be used for

system verification and training an object detector.

To learn more about this app, see “Get Started with the Lidar Labeler”.

1 Apps

1-2

Open the Lidar Labeler App
• MATLAB® Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter lidarLabeler.

Examples
• “Get Started with the Lidar Labeler”
• “Choose an App to Label Ground Truth Data”
• “Keyboard Shortcuts and Mouse Actions for Lidar Labeler”

Programmatic Use
lidarLabeler opens a new session of the app, enabling you to label ground truth data in point
clouds.

lidarLabeler(velodyneLidarFileName,deviceModel,calibrationFile) opens the app and
loads the velodyneLidarFileName.

lidarLabeler(ptCloudSeqFolder) opens the app and loads the point cloud sequence from the
folder ptCloudSeqFolder, where ptCloudSeqFolder is a string scalar or character vector

 Lidar Labeler

1-3

specifying a folder that contains point cloud files. The point cloud files must have extensions
supported by pcformats, and are loaded in the order returned by the dir function.

lidarLabeler(lasSeqFolder) opens the app and loads the LAS sequence from the folder
lasSeqFolder, where lasSeqFolder is a string scalar or character vector specifying a folder
contains LAS files. LAS files must have extensions supported by lasformats, and are loaded in the
order returned by the dir function.

lidarLabeler(___ ,'SyncImageViewerTargetHandle',syncImageViewer) opens the app
and loads both of these components:

• A point cloud signal, specified using any of the input argument combinations from previous
syntaxes.

• An external video or image sequence display tool that is time-synchronized with the specified
point cloud signal.

The syncImageViewer input is a handle to a lidar.syncImageViewer.SyncImageViewer class
that implements the external tool.

For example, this code opens the app with a point cloud signal and synchronized video visualization
tool.
sourceName = fullfile(toolboxdir('lidar'),'lidardata','lcc', ...
 'HDL64','pointCloud');
lidarLabeler(sourceName,'SyncImageViewerTargetHandle',@SyncImageDisplay)

lidarLabeler(sessionFile) opens the app and loads a saved app session sessionFile. The
sessionFile input contains the path and file name of a MAT-file. The MAT-file that sessionFile
points to contains the saved session.

lidarLabeler(gTruth) opens the app and loads a groundTruth object .

Limitations
• The labels do not support sublabels.
• The Label Summary window does not support sublabels.

More About
ROI Labels and Attributes

On the left side of the app, the ROI Labels pane contains the ROI label definitions that you can mark
on the point cloud frames. You can create label definitions directly from this pane. Alternatively, you
can create label definitions programmatically by using a labelDefinitionCreatorLidar object
and then import these label definitions into an app session.

The app supports the definition of ROI labels and attributes.

ROI Labels

An ROI label is a label that corresponds to an ROI in a signal frame. This table describes the
supported label type.

1 Apps

1-4

ROI
Label

Descrip
tion

Example

Cuboid Draw
cuboidal
ROI
labels
around
objects.

Line Draw
line
labels.

Voxel Draw
voxel
ROI
labels
around
objects.

You can show or hide the labels by using the icon on the ROI Labels pane.

The appears only after you define a label. By default, the app displays all the labels. To hide a

label, click on the icon alongside the label name. The app hides the corresponding label and

displays the icon.

Show Label Hide Label

 Lidar Labeler

1-5

ROI Attributes

An ROI attribute specifies additional information about an ROI label. For example, in a driving scene,
attributes might include the type or color of a vehicle. This table describes the supported attribute
types.

Attribute Type Sample Attribute Definition Sample Default Values
Numeric Value

String

Logical

List

Tips
• Use the lidar.syncImageViewer.SyncImageViewer class to create a tool for viewing the

image corresponding to the point cloud data.
• Remove the ground plane to clearly view the created object labels.

1 Apps

1-6

• Use the rotate, translate, expand, and shrink options to edit the cuboids after drawing them.
• Use the Camera View option to save the a view of the data from the current angle and direction.
• To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to

use before you begin marking your ground truth.
• You can copy and paste the labels between signals that are of the same type.

Algorithms
You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”.
You can also use one of the built-in algorithms by following these steps:

1 Import the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm and select one of the built-in automation

algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation

window.

Lidar Object Tracker

Track an object through the point cloud frame. To use this algorithm, you must draw a cuboid ROI on
an object you wish to track. You can also draw multiple cuboid ROIs to track more than one label.
Running the algorithm provides tracking data of the labels that you can accept or reject. You can also
undo the run and perform it again.

The step by step procedure is displayed on app when you select the Lidar Object Tracker algorithm.

Point Cloud Temporal Interpolator

Estimate cuboid ROIs between point cloud frames by interpolating the ROI locations across the time
range. To use this algorithm, you must draw a cuboid ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a point cloud sequence with 10 frames. The first frame has a cuboid ROI centered at [5, 5,
0]. The 10th frame has a cuboid ROI centered at [25, 25, 0]. At each frame, the algorithm moves the
ROI 2 points in the x-direction, 2 points in the y-direction, and 0 points in the z-direction. Therefore,
the algorithm centers the ROI at [7, 7, 0] in the second frame, [9, 9, 0] in the third frame, and so on,
up to [23, 23, 0] in the second-to-last frame.

Version History
Introduced in R2020b

See Also
Apps
Image Labeler | Video Labeler

Objects
groundTruthLidar | labelDefinitionCreatorLidar

 Lidar Labeler

1-7

Classes
lidar.syncImageViewer.SyncImageViewer

Topics
“Get Started with the Lidar Labeler”
“Choose an App to Label Ground Truth Data”
“Keyboard Shortcuts and Mouse Actions for Lidar Labeler”

1 Apps

1-8

Lidar Camera Calibrator
Interactively estimate rigid transformation between lidar sensor and camera

Description
The Lidar Camera Calibrator app enables you to interactively estimate the rigid transformation
between a lidar sensor and a camera. The app performs calibration by reading the calibration images
and point clouds captured by the user. The app reads point cloud data in the PLY and PCD formats,
and images in any format supported by imformats.

Using the app, you can:

• Detect, extract, and visualize checkerboard features from image and point cloud data.
• Estimate the rigid transformation between the camera and the lidar using feature detection

results.
• Use the calibration results to fuse data from both the sensors. You can visualize point cloud data

projected onto the images, and color or grayscale information from the images fused with point
cloud data.

• View the plotted calibration error metrics. You can remove outliers, using a threshold line, and
recalibrate the remaining data.

• Define a region of interest (ROI) around the checkerboard to reduce the computation resources
required by the transformation estimation process.

• Export the transformation and error metric data as workspace variables or MAT files. You can also
create a MATLAB script for the entire workflow.

 Lidar Camera Calibrator

1-9

Open the Lidar Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter lidarCameraCalibrator.

Examples

Start and Load Parameters into Lidar Camera Calibrator App

Define paths to the image and point cloud files.

imageFilesPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','images');
pcFilesPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','pointCloud');

Load the checker size and padding values of the checkerboard.

checkerSize = 81; % millimeters
padding = [0 0 0 0]; % millimeters

Launch the app with these parameters.

1 Apps

1-10

lidarCameraCalibrator(imageFilesPath,pcFilesPath,checkerSize,padding)

• “Read Lidar and Camera Data from Rosbag File”

Programmatic Use
lidarCameraCalibrator opens a new session of the Lidar Camera Calibrator app.

lidarCameraCalibrator(sessionFile) opens the Lidar Camera Calibrator app and loads a
previously saved app session, sessionFile.

lidarCameraCalibrator(imageFilesPath,pcFilesPath,checkerSize,padding) opens a
new session of the app and loads the specified input data. The app reads image files from
imageFilesPath and point cloud files from pcFilesPath. Both of these arguments must be valid
folders containing images and point clouds, respectively. checkerSize is the square checker
dimension of the checkerboard used in calibration and padding contains the padding values of the
checkerboard, specified as a positive numeric scalar in millimeters.

Limitations
The Lidar Camera Calibrator app has these limitations:

• The point cloud axes tools and overall responsiveness are slow in Linux® machines.
• The script generated from Export > Generate MATLAB Script does not contain any manually

selected checkerboard regions using the Select Checkerboard feature. In the script, the
checkerboard region is detected in the specified ROI.

• After manually selected checkerboard regions using the Select Checkerboard feature, when the
user comes back to the Calibration tab, you can see the selected points (highlighted in red) only
while viewing the whole point cloud (i.e. when SnapToROI button is unselected).

Version History
Introduced in R2021a

See Also
Functions
estimateCheckerboardCorners3d | detectRectangularPlanePoints |
estimateLidarCameraTransform | projectLidarPointsOnImage | fuseCameraToLidar |
bboxCameraToLidar | bboxLidarToCamera

Topics
“Read Lidar and Camera Data from Rosbag File”
“What Is Lidar-Camera Calibration?”
“Calibration Guidelines”
“Get Started with Lidar Camera Calibrator”

 Lidar Camera Calibrator

1-11

Lidar Viewer
Visualize and analyze lidar data

Description
The Lidar Viewer app enables you to visualize, analyze, and preprocess point cloud data. The app
provides these features:

• Load and visualize point cloud data. The app can import pointCloud objects from the workspace
and read point cloud data from PLY, PCAP, LAS, LAZ, PCD, rosbag files, or any custom source. You
can export the processed point clouds as PCD, PLY, LAS, or LAZ files.

• Measure point cloud attributes such as distance, elevation, location, and volume.
• View and analyze point cloud data using the built-in camera views, color maps, and clustering

options. You can also create and save custom camera views.
• Use built-in preprocessing algorithms to denoise, downsample, filter, crop, and remove ground

from point cloud data.
• Create and import custom preprocessing algorithms to edit point clouds. You can also create a

user interface to interactively tune the algorithm parameters.
• Export the preprocessing operations performed on a point cloud as a MATLAB function to reuse

them.
• Compare two or more point clouds using an overlay.

1 Apps

1-12

Open the Lidar Viewer App
• MATLAB Toolstrip: On the Apps tab, click on the app icon under the Image Processing and

Computer Vision section.
• MATLAB command window: Enter lidarViewer. This opens a new session of the Lidar Viewer

app.

Version History
Introduced in R2021b

See Also
Apps
Lidar Labeler | Lidar Camera Calibrator

 Lidar Viewer

1-13

Functions
pcshow | pointCloud | pcdownsample | pcmedian | pcdenoise | pcorganize |
segmentGroundSMRF | pcfitplane | segmentGroundFromLidarData

Objects
pointCloud | lasFileReader

Topics
“Get Started with Lidar Viewer”
“Create Custom Preprocessing Workflow with Lidar Viewer”
“Transform Point Cloud Using Lidar Viewer”

1 Apps

1-14

Objects

2

hasCRSData
Check if E57 file has CRS data

Syntax
flag = hasCRSData(e57Reader)

Description
flag = hasCRSData(e57Reader) returns a logical 1 (true) if the E57 file specified by the
e57FileReader object contains coordinate reference system (CRS) data. Otherwise, it returns a
logical 0 (false).

Examples

Check for CRS Data in E57 File

Download a ZIP file containing an E57 file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/e57ParkingLot.zip");
saveFolder = fileparts(zipFile);
e57FileName = [saveFolder filesep 'parkingLot.e57'];
if ~exist(e57FileName,"file")
 unzip(zipFile,saveFolder)
end

Create an e57FileReader object using the downloaded E57 file.

e57Reader = e57FileReader(e57FileName);

Check for CRS data in the E57 file by using the hasCRSData function.

flag = hasCRSData(e57Reader);
disp(flag)

 0

Input Arguments
e57Reader — E57 file reader
e57FileReader object

E57 file reader, specified as an e57FileReader object.

Version History
Introduced in R2023a

2 Objects

2-2

See Also
e57FileReader | readPointCloud | readCRS

Topics
“Read Point Cloud Data from LAZ File”
“Read Lidar and Camera Data from Rosbag File”
“Read, Process, and Write Lidar Point Cloud Data”

 hasCRSData

2-3

readCRS
Read coordinate reference system data from E57 file

Syntax
crs = readCRS(e57Reader)

Description
crs = readCRS(e57Reader) reads the coordinate reference system data from the E57 file
specified by the e57FileReader object e57Reader.

This function requires Mapping Toolbox™.

Examples

Read CRS Data from E57 File

Download a ZIP file containing an E57 file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/e57ParkingLot.zip");
saveFolder = fileparts(zipFile);
e57FileName = [saveFolder filesep 'parkingLot.e57'];
if ~exist(e57FileName,"file")
 unzip(zipFile,saveFolder)
end

Create an e57FileReader object using the downloaded E57 file.

e57Reader = e57FileReader(e57FileName);

Check for CRS data in the E57 file by using the hasCRSData function. If the file contains CRS data,
read the CRS data by using the readCRS function.

if hasCRSData(e57Reader)
 crs = readCRS(e57Reader);
 disp(crs)
else
 disp("No CRS data available.")
end

No CRS data available.

Input Arguments
e57Reader — E57 file reader
e57FileReader object

E57 file reader, specified as an e57FileReader object.

2 Objects

2-4

Output Arguments
crs — Coordinate reference system
projcrs object

Coordinate reference system (CRS), returned as a projcrs object.

Version History
Introduced in R2023a

See Also
e57FileReader | readPointCloud | hasCRSData

Topics
“Read Point Cloud Data from LAZ File”
“Read Lidar and Camera Data from Rosbag File”
“Read, Process, and Write Lidar Point Cloud Data”

 readCRS

2-5

readPointCloud
Read point cloud data from E57 file

Syntax
ptCloud = readPointCloud(e57Reader,ptCloudNum)
[ptCloud,pcMetadata] = readPointCloud(___)

Description
ptCloud = readPointCloud(e57Reader,ptCloudNum) reads the point cloud specified by the
point cloud number ptCloudNum from the E57 file specified by the e57FileReader object
e57Reader.

[ptCloud,pcMetadata] = readPointCloud(___) returns the metadata of the point cloud read
from the file using all input arguments from the previous syntax.

Examples

Read and Visualize Point Cloud Data from E57 File

Download a ZIP file containing an E57 file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/e57ParkingLot.zip");
saveFolder = fileparts(zipFile);
e57FileName = [saveFolder filesep 'parkingLot.e57'];
if ~exist(e57FileName,"file")
 unzip(zipFile,saveFolder)
end

Create an e57FileReader object using the downloaded E57 file.

e57Reader = e57FileReader(e57FileName);

Define a variable for storing point clouds, ptCloudArr and their corresponding poses, tformArr.

ptCloudArr = [];
tformArr = [];

Read the point cloud data.

for i = 1:e57Reader.NumPointClouds
 [ptCloud,pcMetadata] = readPointCloud(e57Reader,i);
 for j = 1:numel(ptCloud)
 ptCloudArr = [ptCloudArr ptCloud(j)];
 tformArr = [tformArr pcMetadata.RelativePose];
 end
end

Align the point clouds from the file to create a map.

2 Objects

2-6

pcMap = pcalign(ptCloudArr,tformArr);

Display the map.

figure
pcshow(pcMap)

Input Arguments
e57Reader — E57 file reader
e57FileReader object

E57 file reader, specified as an e57FileReader object.

ptCloudNum — Point cloud number
positive integer

Point cloud number to read from the file, specified as a positive integer. This value must be less than
or equal to the total number of point clouds in the file, as indicated by the value of the
NumPointClouds property of the e57Reader input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 readPointCloud

2-7

Output Arguments
ptCloud — Point cloud read from file
pointCloud object

Point cloud read from the file, returned as a pointCloud object. The function returns organized
point clouds when the file contains organization information. Otherwise, it returns unorganized point
clouds.

Note The function returns an array of organized point clouds when the file contains organization
information for multiple returns.

pcMetadata — Point cloud metadata
structure

Point cloud metadata, returned as a structure with these fields.

Field Description
PointAttributes Attributes of the points in the point cloud, returned as a

structure containing these fields.

• Classification — Classification value, returned as a
nonnegative integer.

• ReturnCount — Return count, returned as a positive
integer.

• ReturnIndex — Return index, returned as a
nonnegative integer.

• TimeStamp — Timestamp value, in seconds.

For an unorganized point cloud, each of these fields is an
M-element vector. M is the number of points in the point
cloud.

For an organized point cloud, each of these fields is an M-
by-N matrix. M and N are the number of rows and columns
of the point cloud, respectively.

Note The function returns PointAttributes as an array
of structures when it returns an array of point clouds.

RelativePose Rigid transformation of the point cloud from the sensor
local coordinate system to the file coordinate system,
returned as a rigidtform3d object.

AcquisitionPeriod Absolute start time and end time between which the sensor
records the point cloud, respectively returned as a two-
element datetime vector.

GUID Globally unique identifier (GUID) of the point cloud in the
Data3D element of the file, returned as a character vector.

2 Objects

2-8

Field Description
OriginalGUIDs GUIDs of the data sets to which the points in the Data3D

element belong, returned as a cell array of character
vectors.

Name User-defined name of the Data3D element, returned as a
character vector.

Description User-defined description for the Data3D element, returned
as a character vector.

CartesianBounds Allowed bounds for the Cartesian coordinates of the points
in the Data3D element, returned as a six-element vector of
the form [xmin xmax ymin ymax zmin zmax]. Values are in meters.

SphericalBounds Allowed bounds for the Spherical coordinates of the points
in the Data3D element, returned as a structure with these
fields.

Field Description
Range Minimum and maximum

bounds for the range,
returned as respective
elements of a two-element
nonnegative vector. Values
are in meters.

Elevation Minimum and maximum
bounds for the elevation
angle, returned as
respective elements of a
two-element vector. Values
are in radians.

Azimuth Minimum and maximum
bounds for the azimuth
angle, returned as
respective elements of a
two-element vector. Values
are in radians.

 readPointCloud

2-9

Field Description
IndexBounds Bounds for point indices, returned as a structure with these

fields.

Field Description
Row Minimum and maximum

bounds for the row indices of
the points in the point cloud,
returned as respective
elements of a two-element
nonnegative vector.

Column Minimum and maximum
bounds for the column
indices of the points in the
point cloud, returned as
respective elements of a
two-element nonnegative
vector.

Return Minimum and maximum
bounds for the return
indices of the points in the
point cloud, returned as
respective elements of a
two-element nonnegative
vector.

2 Objects

2-10

Field Description
SensorData Metadata of the lidar sensor capturing the point cloud,

returned as a structure with these fields.

Name Description
Vendor Name of the lidar sensor

vendor, returned as a
character vector.

Model Model name or model
number of the lidar sensor,
returned as a character
vector.

SerialNumber Serial number of the lidar
sensor, returned as a
character vector.

HardwareVersion Hardware version of the
lidar sensor, returned as a
character vector.

SoftwareVersion Software version of the lidar
sensor, returned as a
character vector.

FirmwareVersion Firmware version of the
lidar sensor, returned as a
character vector.

IntensityLimits Minimum and maximum
producible intensity of the
lidar sensor, returned as
respective elements of a
two-element vector.

ColorLimits Minimum and maximum
producible color limits of the
sensor, returned as six-
element vector of the form
[redmin redmax greenmin
greenmax bluemin bluemax] .

WeatherData Weather data, returned as a structure with these fields.

• Temperature — Temperature in degree Celsius.
• RelativeHumidity — Relative humidity in percentage.
• AtmosphericPressure — Atmospheric pressure in

Pascals.

For more information on the E57 file format, see “E57 File Format” on page 2-15.

Version History
Introduced in R2023a

 readPointCloud

2-11

See Also
e57FileReader | hasCRSData | readCRS

Topics
“Read Point Cloud Data from LAZ File”
“Read Lidar and Camera Data from Rosbag File”
“Read, Process, and Write Lidar Point Cloud Data”

2 Objects

2-12

e57FileReader
Read point cloud data from E57 file

Description
An e57FileReader object stores the metadata present in an E57 file as read-only properties. Use
these properties with the readPointCloud object function to read point cloud data from the file.

The E57 file format, specified by the American Society for Testing and Materials (ASTM), stores data
in a hierarchical tree structure based on XML data format. You can store multiple point clouds and
images along with the metadata of the associated sensors. Each E57 file contains a Data3D element
that stores the point cloud data and an Images2D element that stores images. For more information
on the file format, see “E57 File Format” on page 2-15.

Creation

Syntax
e57Reader = e57FileReader(fileName)

Description

e57Reader = e57FileReader(fileName) creates an e57FileReader object that reads point
cloud data from an E57 file. The fileName argument, which specifies the absolute or relative path to
the E57 file, sets the FileName object property. You specify fileName as character vector or string
scalar.

Properties
FileName — Name of E57 file
character vector

This property is read-only.

Name of the E57 file, stored as a character vector.

FormatName — Format name in E57 file header
character vector

This property is read-only.

Format name in the E57 file header, stored as a character vector.

GUID — Globally unique identifier in E57 file header
character vector

This property is read-only.

 e57FileReader

2-13

Globally unique identifier in the E57 file header, stored as a character vector.

Version — E57 file version
character vector

This property is read-only.

E57 file version, stored as a character vector.

LibraryVersion — Library version used to save E57 file
character vector

This property is read-only.

Library version used to save the E57 file, stored as a character vector.

FileCreationTime — File creation date and time
datetime object

This property is read-only.

File creation date and time, stored as a datetime object.

NumPointClouds — Number of point clouds
nonnegative integer

This property is read-only.

Number of point clouds in the E57 file, stored as a nonnegative integer.

Object Functions
readPointCloud Read point cloud data from E57 file
hasCRSData Check if E57 file has CRS data
readCRS Read coordinate reference system data from E57 file

Examples

Read and Visualize Point Cloud Data from E57 File

Download a ZIP file containing an E57 file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/e57ParkingLot.zip");
saveFolder = fileparts(zipFile);
e57FileName = [saveFolder filesep 'parkingLot.e57'];
if ~exist(e57FileName,"file")
 unzip(zipFile,saveFolder)
end

Create an e57FileReader object using the downloaded E57 file.

e57Reader = e57FileReader(e57FileName);

Define a variable for storing point clouds, ptCloudArr and their corresponding poses, tformArr.

2 Objects

2-14

ptCloudArr = [];
tformArr = [];

Read the point cloud data.

for i = 1:e57Reader.NumPointClouds
 [ptCloud,pcMetadata] = readPointCloud(e57Reader,i);
 for j = 1:numel(ptCloud)
 ptCloudArr = [ptCloudArr ptCloud(j)];
 tformArr = [tformArr pcMetadata.RelativePose];
 end
end

Align the point clouds from the file to create a map.

pcMap = pcalign(ptCloudArr,tformArr);

Display the map.

figure
pcshow(pcMap)

Algorithms
The E57 file format is a general purpose, open standard format that stores point cloud data from lidar
sensors, 3-D scanners, and stereo vision systems, as well as stores 2-D image data produced by

 e57FileReader

2-15

cameras. The format can also store the core metadata associated with the sensors that captured its
data. This file format is flexible and easy to interpret.

Each E57 file has a hierarchical tree structure based on the XML format. An E57 file has a header, a
binary section, and an XML section.

• Header — Contains information such as the file version number and the location of the XML
section.

• Binary section — Contains the actual data of the point clouds and images.
• XML section — Contains a hierarchical tree that references the data stored in the binary section.

This figure shows the typical structure of the XML section.

The E57Root element is the root node of the XML hierarchy. It stores point clouds and images in a
common file coordinate system. The structure also contains additional file information, such as file
creation date and time.

Data3D element stores each point cloud as an individual structure. Each structure stores the pose
information and individual point attributes of the point cloud.

Images2D element stores images as individual structures, similar to the Data3D element.

For more information on the E57 file format, see the standard specification on the ASTM
INTERNATIONAL website.

Version History
Introduced in R2023a

See Also
readPointCloud | hasCRSData | readCRS | lasFileReader | velodyneFileReader |
ousterFileReader | hesaiFileReader

Topics
“Read Point Cloud Data from LAZ File”
“Read Lidar and Camera Data from Rosbag File”
“Read, Process, and Write Lidar Point Cloud Data”

2 Objects

2-16

https://www.astm.org/

pointCloudInputLayer
Point cloud input layer

Description
A point cloud input layer inputs 3-D point clouds to a network and applies data normalization. You can
input any lidar data, such as 2-D lidar scans, to this layer, but the data must be a 2-D or a 3-D numeric
array, as specified by the InputSize property.

Creation

Syntax
layer = pointCloudInputLayer(inputSize)
layer = pointCloudInputLayer(inputSize,Name=Value)

Description

layer = pointCloudInputLayer(inputSize) creates a point cloud input layer with the
specified input size. The inputSize argument sets the InputSize property.

layer = pointCloudInputLayer(inputSize,Name=Value) specifies properties using one or
more name-value arguments. For example, Normalization="zscore" applies z-score normalization
to the layer.

Properties
3-D Point Cloud Input

InputSize — Size of the input
vector of positive integers

Size of the input data, specified as vector of positive integers. You can specify one of these options.

• For an unorganized point cloud, specify input size as two-element vector of the form [M C]. M is
the number of points in the point cloud. C is the number of channels, which must be greater than
or equal to 1.

• For an organized point cloud, specify input size as a three-element vector of the form [M N C]. M
and N represent the number of rows and columns in the point cloud, respectively. C is the number
of channels, which must be a positive integer greater than or equal to 1.

Normalization — Data normalization
'none' (default) | 'zerocenter' | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' |
function handle

This property is read-only.

 pointCloudInputLayer

2-17

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics when using the
trainNetwork function. To save time when training, specify the required statistics for normalization
and set the 'ResetInputNormalization' option in trainingOptions to false.

Data Types: char | string

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Data Types: char | string

Mean — Mean for zero-center and z-score normalization
[] (default) | matrix | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a one of these options.

Point Cloud Format Element-Wise Normalization Channel-Wise Normalization
Unorganized point cloud M-by-C numeric array. M is the

number of points in the point
cloud, and C is the number of
channels.

1-by-C numeric array

Organized point cloud M-by-N-by-C numeric array. M
and N are the number of rows
and columns in the point cloud,
respectively, and C is the
number of channels.

1-by-1-by-C numeric array

2 Objects

2-18

You can also specify this value as a scalar, in which case the function normalizes the entire input data
set using the specified value.

Note To specify the Mean property, Normalization must be 'zerocenter' or 'zscore'. If Mean
is [], then the trainNetwork function calculates the mean.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | matrix | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a one of these options.

Point Cloud Format Element-Wise Normalization Channel-Wise Normalization
Unorganized point cloud M-by-C numeric array. M is the

number of points in the point
cloud, and C is the number of
channels.

1-by-C numeric array

Organized point cloud M-by-N-by-C numeric array. M
and N are the number of rows
and columns in the point cloud,
respectively, and C is the
number of channels.

1-by-1-by-C numeric array

You can also specify this value as a scalar, in which case the function normalizes the entire input data
set using the specified value.

Note To specify the StandardDeviation property, Normalization must be 'zscore'. If
StandardDeviation is [], then the trainNetwork function calculates the standard deviation.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | matrix | 3-D array | numeric scalar

Minimum value for rescaling, specified as a one of these options.

Point Cloud Format Element-Wise Normalization Channel-Wise Normalization
Unorganized point cloud M-by-C numeric array. M is the

number of points in the point
cloud, and C is the number of
channels.

1-by-C numeric array

 pointCloudInputLayer

2-19

Point Cloud Format Element-Wise Normalization Channel-Wise Normalization
Organized point cloud M-by-N-by-C numeric array. M

and N are the number of rows
and columns in the point cloud,
respectively, and C is the
number of channels.

1-by-1-by-C numeric array

You can also specify this value as a scalar, in which case the function normalizes the entire input data
set using the specified value.

Note To specify the Min property, Normalization must be 'rescale-symmetric' or 'rescale-
zero-one'. If Min is [], then the trainNetwork function calculates the minima.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | matrix | 3-D array | numeric scalar

Maximum value for rescaling, specified as one of these options.

Point Cloud Format Element-Wise Normalization Channel-Wise Normalization
Unorganized point cloud M-by-C numeric array. M is the

number of points in the point
cloud, and C is the number of
channels.

1-by-C numeric array

Organized point cloud M-by-N-by-C numeric array. M
and N are the number of rows
and columns in the point cloud,
respectively, and C is the
number of channels.

1-by-1-by-C numeric array

You can also specify this value as a scalar, in which case the function normalizes the entire input data
set using the specified value.

Note To specify the Max property, Normalization must be 'rescale-symmetric' or 'rescale-
zero-one'. If Max is [], then the trainNetwork function calculates the maxima.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

2 Objects

2-20

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

This property is read-only.

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. The layer has one output.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Point Cloud Input Layer

Create a point cloud input layer using an unorganized point cloud with 1000 points 3 channels.

layer = pointCloudInputLayer([1000 3],Name="Input")

layer =
 PointCloudInputLayer with properties:

 Name: 'Input'
 InputSize: [1000 3]

 Hyperparameters
 Normalization: 'none'

 pointCloudInputLayer

2-21

 NormalizationDimension: 'auto'

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The function supports code generation for organized point clouds only.

For an example on how to perform code generation with unorganized point clouds, see “Code
Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”.

• Code generation does not support Normalization specified using a function handle.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The function supports code generation for organized point clouds only.

For an example showing how to perform code generation with unorganized point clouds, see
“Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”.

• Code generation does not support specifying a function handle for the Normalization argument.

See Also
trainNetwork | layerGraph | squeezesegv2Layers | pointnetplusLayers | pcsemanticseg

Topics
“Getting Started with Point Clouds Using Deep Learning”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Datastores for Deep Learning” (Deep Learning Toolbox)

2 Objects

2-22

removeDefects
Remove surface mesh defects

Syntax
removeDefects(mesh,"duplicate-vertices")
removeDefects(mesh,"duplicate-faces")
removeDefects(mesh,"unreferenced-vertices")
removeDefects(mesh,"degenerate-faces")
removeDefects(mesh,"nonmanifold-edges")

Description
removeDefects(mesh,"duplicate-vertices") removes duplicate vertices from the surface
mesh mesh.

removeDefects(mesh,"duplicate-faces") removes duplicate faces from the surface mesh
mesh.

removeDefects(mesh,"unreferenced-vertices") removes unreferenced vertices from the
surface mesh mesh. Unreferenced vertices are those vertices that are not part of any face.

removeDefects(mesh,"degenerate-faces") removes degenerate faces from the surface mesh
mesh. Degenerate faces are faces with an area of zero.

removeDefects(mesh,"nonmanifold-edges") removes nonmanifold edges from the surface
mesh mesh.

Examples

Remove Unreferenced Vertices from Surface Mesh

Define mesh vertices and faces for the surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];
faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original mesh")

Add new vertices to the mesh.

newVertices = [1, 2, 3; 4, 5, 6];
addVertices(mesh, newVertices)

Remove unreferenced vertices from the surface mesh.

 removeDefects

2-23

removeDefects(mesh,"unreferenced-vertices")

Remove NonManifold Edges from Surface Mesh

Define mesh vertices and faces for the surface mesh.

vertices = [0 0 0; 0 0 1; 0 1 1; 0 0 2; 1 0.5 1];
faces = [1 2 3; 2 3 4; 2 3 5];

Create the surface mesh.

mesh = surfaceMesh(vertices,faces);

Check if the mesh is edge-manifold.

allowBoundaryEdges = true;
edgeManifoldBefore = isEdgeManifold(mesh,allowBoundaryEdges)

edgeManifoldBefore = logical
 0

Remove nonmanifold edges from the surface mesh and check if the mesh is edge-manifold.

removeDefects(mesh,"nonmanifold-edges")
edgeManifoldAfter = isEdgeManifold(mesh,allowBoundaryEdges)

edgeManifoldAfter = logical
 1

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Version History
Introduced in R2022b

See Also
surfaceMesh | isEdgeManifold | isVertexManifold | addVertices | addFaces |
removeVertices | removeFaces

2 Objects

2-24

isWatertight
Check if surface mesh is watertight

Syntax
TF = isWatertight(mesh)

Description
TF = isWatertight(mesh) checks if the mesh is watertight. A mesh is watertight when it is edge-
manifold and vertex-manifold, but not self-intersecting.

Examples

Check If Surface Mesh Is Watertight

Define mesh vertices and faces for the surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];
faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Input Mesh")

Check if the mesh is watertight.

TF = isWatertight(mesh)

TF = logical
 1

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Output Arguments
TF — Surface mesh is watertight
0 | 1

 isWatertight

2-25

Surface mesh is watertight, returned as a logical 0 (false) or 1 (true). The function returns true
when the mesh is watertight. Otherwise, it returns false.

Version History
Introduced in R2022b

See Also
surfaceMesh | isEdgeManifold | isOrientable | isSelfIntersecting | isVertexManifold

2 Objects

2-26

isVertexManifold
Check if surface mesh is vertex-manifold

Syntax
TF = isVertexManifold(mesh)

Description
TF = isVertexManifold(mesh) checks if the surface mesh is vertex-manifold. A mesh is vertex-
manifold if faces with a common vertex form an open or closed fan.

Examples

Check If Surface Mesh Is Vertex-Manifold

Define mesh vertices and faces for the surface mesh.

vertices = [0 0 0; 0 0 1; 0 1 1; 0 0 2; 1 0.5 1];
faces = [1 2 3; 2 3 4; 2 3 5];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Input Mesh")

Check if the mesh is vertex-manifold.

TF = isVertexManifold(mesh)

TF = logical
 1

 isVertexManifold

2-27

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Output Arguments
TF — Surface mesh is vertex-manifold
0 | 1

Surface mesh is vertex-manifold, returned as a logical 0 (false) or 1 (true). The function returns
true when the mesh is vertex-manifold. Otherwise, it returns false.

Version History
Introduced in R2022b

See Also
surfaceMesh | isEdgeManifold | isOrientable | isSelfIntersecting | isWatertight

2 Objects

2-28

isSelfIntersecting
Check if surface mesh is self-intersecting

Syntax
TF = isSelfIntersecting(mesh)

Description
TF = isSelfIntersecting(mesh) checks if the surface mesh is self-intersecting. A mesh is self-
intersecting if at least one of its face intersects another face.

Examples

Check If Surface Mesh Is Self-Intersecting

Define mesh vertices and faces for the mesh.

vertices =[0 0 0; 0 1 0; 1 0 0; 1 1 0; ...
 0.5 0.5 -1; 0 1 1; 1 0 1];
faces = [1 2 3; 2 3 4; 5 6 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Input Mesh")

Check if the mesh is self-intersecting.

TF = isSelfIntersecting(mesh)

TF = logical
 1

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Output Arguments
TF — Surface mesh is self-intersecting
0 | 1

Surface mesh is self-intersecting, returned as a logical 0 (false) or 1 (true). The function returns
true when the mesh is self-intersecting. Otherwise, it returns false.

 isSelfIntersecting

2-29

Version History
Introduced in R2022b

See Also
surfaceMesh | isEdgeManifold | isOrientable | isVertexManifold | isWatertight

2 Objects

2-30

isOrientable
Check if surface mesh is orientable

Syntax
TF = isOrientable(mesh)

Description
TF = isOrientable(mesh) checks if the surface mesh is orientable. The orientation of a mesh is
given by the cyclic order of its vertices. A mesh is orientable if all its face normals point outside.

Examples

Check If Surface Mesh Is Orientable

Read a surface mesh from an STL file.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
 "surfaceMesh","mobius.stl");
mesh = readSurfaceMesh(fileName);

Display the surface mesh

surfaceMeshShow(mesh,Title="Input Mesh")

Check if the mesh is orientable.

TF = isOrientable(mesh)

TF = logical
 0

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Output Arguments
TF — Surface mesh is orientable
0 | 1

Surface mesh is orientable, returned as a logical 0 (false) or 1 (true). The function returns true
when the mesh is orientable. Otherwise, it returns false.

 isOrientable

2-31

Version History
Introduced in R2020b

See Also
surfaceMesh | isEdgeManifold | isSelfIntersecting | isVertexManifold | isWatertight

2 Objects

2-32

isEdgeManifold
Check if surface mesh is edge-manifold

Syntax
TF = isEdgeManifold(mesh,allowBoundaryEdges)

Description
TF = isEdgeManifold(mesh,allowBoundaryEdges) checks if the surface mesh is edge-
manifold. A mesh is edge-manifold if every edge of the mesh bounds either one or two faces.

Examples

Check If Surface Mesh Is Edge-Manifold

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Input Mesh")

Check if the mesh is edge-manifold.

allowBoundaryEdges = false;
TF = isEdgeManifold(mesh,allowBoundaryEdges);
disp(TF)

 1

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

allowBoundaryEdges — Allow boundary edges
true | false

 isEdgeManifold

2-33

Allow boundary edges, specified as a logical true or false. When this value is specified as true, the
function ignores boundary edges while checking if the mesh is edge-manifold.
Data Types: logical

Output Arguments
TF — Surface mesh is edge-manifold
0 | 1

Surface mesh is edge-manifold, returned as a logical 0 (false) or 1 (true). The function returns
true when the mesh is edge-manifold. Otherwise, it returns false.

The function also returns false when a mesh has boundary edges and allowBoundaryEdges is
specified as false.

Version History
Introduced in R2022b

See Also
surfaceMesh | isOrientable | isSelfIntersecting | isVertexManifold | isWatertight

2 Objects

2-34

subdivide
Subdivide surface mesh

Syntax
subdivide(mesh,"midpoint-split",numIterations)
subdivide(mesh,"loop",numIterations)

Description
subdivide(mesh,"midpoint-split",numIterations) subdivides the surface mesh mesh by
using the midpoint-split method with the specified number of iterations. In this method, the function
divides each face of the mesh into four faces in each iteration. New vertices lie at the midpoints of the
edges of the original face.

subdivide(mesh,"loop",numIterations) subdivides the surface mesh by using a loop
subdivision method with the specified number of iterations. In this methods, the function divides each
triangular face into four by connecting the midpoints of the edges, then updates the new vertices as a
weighted average of neighboring positions. The function divides each face into four faces in each
iteration.

Examples

Subdivide Surface Mesh Using Midpoint-Split Method

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Subdivide the mesh using the midpoint-split method. Display the subdivided mesh.

numIterations = 4;
subdivide(mesh,"midpoint-split",numIterations);
surfaceMeshShow(mesh,Title="Subdivided Mesh",WireFrame=true)

 subdivide

2-35

Subdivide Surface Mesh Using Loop Method

Read a surface mesh from a PLY file.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
 "surfaceMesh","sphere.ply");
mesh = readSurfaceMesh(fileName);

Display the surface mesh.

surfaceMeshShow(mesh,Title="Original Mesh",WireFrame=true)

Subdivide the mesh using the loop method, and display the result.

numIterations = 1;
subdivide(mesh,"loop",numIterations)
surfaceMeshShow(mesh,Title="Subdivided mesh",WireFrame=true)

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

numIterations — Number of iterations for subdivision method
positive integer

Number of iterations for the subdivision method, specified as a positive integer. At each iteration, the
function divides each face of the mesh into four faces.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2022b

See Also
surfaceMesh | rotate | translate | transform | scale | crop | simplify

2 Objects

2-36

simplify
Simplify surface mesh

Syntax
simplify(mesh)
simplify(mesh,Name=Value)

Description
simplify(mesh) simplifies the surface mesh mesh by using quadric decimation.

simplify(mesh,Name=Value) specifies options using one or more name-value arguments. For
example, SimplificationMethod="vertex-clustering" simplifies the surface mesh by using
the vertex-clustering method.

Examples

Simplify Surface Mesh Using Quadric Decimation

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Subdivide the mesh using the midpoint-split method, and display the subdivided mesh.

numIterations = 4;
subdivide(mesh,"midpoint-split",numIterations)
surfaceMeshShow(mesh,Title="Subdivided Mesh",WireFrame=true)

Simplify the surface mesh by using the quadric-decimation method.

 simplify(mesh,SimplificationMethod="quadric-decimation", ...
 TargetNumFaces=30)

Remove any unreferenced vertices, and display the simplified mesh.

removeDefects(mesh,"unreferenced-vertices")
surfaceMeshShow(mesh,Title="Simplified Mesh",WireFrame=true)

 simplify

2-37

Simplify Surface Mesh Using Vertex Clustering

Read a surface mesh from an STL file.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
 "surfaceMesh","mobius.stl");
mesh = readSurfaceMesh(fileName);

Display the surface mesh.

surfaceMeshShow(mesh,Title="Original Mesh",WireFrame=true)

Simplify the surface mesh by using the vertex-clustering method.

simplify(mesh,SimplificationMethod="vertex-clustering", ...
 VoxelSize=0.15,MergeMethod="Quadric")

Remove any unreferenced vertices, and display the simplified mesh.

removeDefects(mesh,"unreferenced-vertices")
surfaceMeshShow(mesh,Title="Simplified Mesh",WireFrame=true)

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: simplify(mesh,SimplificationMethod="vertex-clustering") simplifies the
surface mesh by using the vertex-clustering method.

SimplificationMethod — Surface mesh simplification method
"quadric-decimation" (default) | "vertex-clustering"

Surface mesh simplification method, specified as "quadric-decimation" or "vertex-
clustering". For more information on these simplification methods, see the “Simplification
Methods” on page 2-40 section.
Data Types: char | string

TargetNumFaces — Number of triangular faces in simplified mesh
positive integer

Number of triangular faces in the simplified mesh, specified as a positive integer. By default, the
function computes this values as 0.2 times the number of faces in the input mesh.

2 Objects

2-38

Note This argument is applicable only when you specify SimplificationMethod as "quadric-
decimation".

Data Types: single | double | int32 | uint32

MaxError — Maximum allowed error when vertex is merged
Inf (default) | positive scalar

Maximum allowed error when a vertex is merged, specified as a positive scalar.

Note This argument is applicable only when you specify SimplificationMethod as "quadric-
decimation".

Data Types: single | double

BoundaryWeight — Weight for edge vertices
1.0 (default) | positive scalar

Weight for the edge vertices, specified as a positive scalar. The function uses this value to preserve
the mesh boundaries.

Note This argument is applicable only when you specify SimplificationMethod as "quadric-
decimation".

Data Types: single | double

VoxelSize — Voxel size for vertex clustering
0.01 (default) | positive scalar

Voxel size for vertex clustering, specified as a positive scalar. The function pools all the vertices
within the specified voxel size to form clusters.

Note This argument is applicable only when you specify SimplificationMethod as "voxel-
clustering".

Data Types: single | double

MergeMethod — Vertex merging method
"Average" (default) | "Quadric"

Vertex merging method, specified as "Average" or "Quadric". When the value is specified as
"Average", the function computes an average value of all vertices in a voxel. When the value is
specified as "Quadric", the function minimizes the distance between the adjacent planes to merge
the vertices.

Note This argument is applicable only when you specify SimplificationMethod as "voxel-
clustering".

 simplify

2-39

Data Types: char | string

Algorithms
Quadric decimation is a method that uses iterative contractions of vertex pairs to simplify a mesh,
and maintains error approximation for all vertices using quadric matrices. The method consists of
these steps.

1 Compute quadric matrices for all vertices, and select vertex pairs to merge.
2 Compute the contraction target vertex for each pair.
3 Iteratively minimize the error of the target vertices to construct the simplified mesh.

Vertex clustering is a method that uses bounding boxes to divide the mesh into voxels. The function
clusters the vertices in each voxel into a single vertex and then updates the mesh faces accordingly.

Version History
Introduced in R2022b

See Also
surfaceMesh | rotate | translate | transform | scale | crop | subdivide

2 Objects

2-40

crop
Crop surface mesh

Syntax
crop(mesh,bbox)

Description
crop(mesh,bbox)crops the surface mesh mesh to the region specified by the 3-D bounding box
bbox.

Examples

Crop Surface Mesh Using a Bounding Box

Read a surface mesh from a PLY file into the workspace.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
 "surfaceMesh","sphere.ply");
sphereMesh = readSurfaceMesh(fileName);

Display the surface mesh.

removeDefects(sphereMesh,"unreferenced-vertices")
surfaceMeshShow(sphereMesh,Title="Original Mesh")

Define a bounding box to crop the sphere mesh to its lower half.

bbox3d = [-1 1 -1 1 -1 0];
crop(sphereMesh,bbox3d)

Display the cropped mesh.

removeDefects(sphereMesh,"unreferenced-vertices")
surfaceMeshShow(sphereMesh, Title="Cropped mesh")

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

bbox — 3-D bounding box dimensions
six-element vector

3-D bounding box dimensions, specified as a six-element vector. The vector is of the form [minX maxX
minY maxY minZ maxZ], specifying the minimum and maximum limits of the box along the x-,y-, z-
directions.

 crop

2-41

Version History
Introduced in R2022b

See Also
surfaceMesh | translate | rotate | transform | scale | simplify | subdivide

2 Objects

2-42

computeNormals
Compute unit normals for mesh vertices and faces

Syntax
computeNormals(mesh)
computeNormals(mesh,"vertices")
computeNormals(mesh,"faces")

Description
computeNormals(mesh) computes the unit normal vector for the vertices and the faces of the
surface mesh mesh. The function overwrites the existing vertex and face normal vectors.

computeNormals(mesh,"vertices") computes the unit normal vector for only the mesh vertices.
A vertex normal is the average of the face normal vectors of all the faces that share the vertex. The
function uses the existing face normal vectors to compute the vertex normal vectors.

computeNormals(mesh,"faces") computes the unit normal vectors for only the mesh faces.

Examples

Compute Normal Vectors for Mesh Vertices and Faces

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);

Compute the unit normal vectors for the mesh vertices and faces.

computeNormals(mesh);
mesh

mesh =
 surfaceMesh with properties:

 Vertices: [8x3 double]
 Faces: [12x3 int32]
 VertexNormals: [8x3 double]
 VertexColors: []
 FaceNormals: [12x3 double]

 computeNormals

2-43

 FaceColors: []
 NumVertices: 8
 NumFaces: 12

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Version History
Introduced in R2022b

See Also
surfaceMesh | vertexCenter | rotate | transform | scale | crop | simplify | subdivide

2 Objects

2-44

scale
Scale vertices of surface mesh

Syntax
scale(mesh,scalingFactor)
scale(mesh,scalingFactor,pivot)

Description
scale(mesh,scalingFactor) scales the vertices of the surface mesh mesh along the x-, y-, z-axes
by the specified scaling factor scalingFactor. The function uses the mesh origin as the pivot point.

scale(mesh,scalingFactor,pivot) scales the mesh vertices along the x-, y-, z-axes about the
specified pivot point.

Examples

Scale Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Scale the vertices of the surface mesh by a factor of two, and display the scaled mesh.

scalingFactor = 2;
scale(mesh,scalingFactor)
surfaceMeshShow(mesh,Title="Scaled Mesh")

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

scalingFactor — Scaling factor for mesh
positive scalar

 scale

2-45

Scaling factor for the surface mesh, specified as a positive scalar.
Data Types: single | double

pivot — Pivot point for scaling
three-element vector

Pivot point for scaling the surface mesh, specified as a three-element vector of the form [x y z]. The
values of the vector define the coordinates of the pivot point.

Version History
Introduced in R2022b

See Also
surfaceMesh | rotate | transform | translate | crop | simplify | subdivide

2 Objects

2-46

vertexCenter
Find vertex center of surface mesh

Syntax
vertexCenter(mesh)

Description
vertexCenter(mesh) finds the center of the mesh vertices of the surface mesh mesh. The vertex
center is the mean value of all vertices.

Examples

Compute Vertex Center of Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Cuboid Mesh")

Find the vertex center of the surface mesh and display its coordinates.

center = vertexCenter(mesh);
disp(center)

 0 0 0

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

Version History
Introduced in R2022b

 vertexCenter

2-47

See Also
surfaceMesh | computeNormals | rotate | scale | crop | simplify | subdivide

2 Objects

2-48

transform
Apply rigid transformation to surface mesh

Syntax
transform(mesh,tform)

Description
transform(mesh,tform) applies the rigid 3-D transformation specified by tform to the surface
mesh mesh.

Examples

Apply Rigid 3-D Transformation to Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Define rotation and translation values, then use them to generate a transformation matrix.

theta = 30;
rotationMat = [cosd(theta) sind(theta) 0;
 -sind(theta) cosd(theta) 0;
 0 0 1];
translationVector = [2 0 0];
tform = rigidtform3d(rotationMat,translationVector);

Apply the rigid transformation and visualize the output.

transform(mesh,tform);
surfaceMeshShow(mesh,Title="Transformed Mesh")

Input Arguments
mesh — Surface mesh
surfaceMesh object

 transform

2-49

Surface mesh, specified as a surfaceMesh object.

tform — Rigid 3-D transformation matrix
rigidtform3d object

Rigid 3-D transformation matrix, specified as a rigidtform3d object.

Version History
Introduced in R2022b

See Also
surfaceMesh | translate | rotate | scale | crop | simplify | subdivide

2 Objects

2-50

rotate
Rotate surface mesh

Syntax
rotate(mesh,"rotmat",rotMatrix)
rotate(mesh,"euler",E,rotSequence)
rotate(mesh,"quaternion",quat)
rotate(___ ,pivot)

Description
rotate(mesh,"rotmat",rotMatrix) rotates the surface mesh mesh around its origin by the
values specified in the rotation matrix rotMatrix.

rotate(mesh,"euler",E,rotSequence) rotates the surface mesh mesh around its origin using
the Euler angles specified by the Euler vector E in the sequence of rotation rotSequence.

rotate(mesh,"quaternion",quat) rotates the surface mesh mesh around its origin using the
values specified by the quaternion array quat.

rotate(___ ,pivot) specifies a pivot point around which to rotate the surface mesh, in addition to
any combination of input arguments from the previous syntaxes.

Examples

Rotate Surface Mesh About z-Axis Using Euler Angles

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Define the Euler angles and rotation sequence for rotating the surface mesh about the z-axis by 30
degrees.

eulerAngles = [30 0 0];
rotSequence = "ZYX";

Rotate the surface mesh and display the output.

 rotate

2-51

rotate(mesh,"euler",eulerAngles,rotSequence)
surfaceMeshShow(mesh,Title="Rotated Mesh")

Rotate Surface Mesh Using Quaternion Array

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Define the quaternion array for rotatating the surface mesh about the y-axis by 60 degrees,

eulerAngles = [60 0 0];
quat = quaternion(eulerAngles,'eulerd','YZX','point');

Rotate surface mesh and display the output.

rotate(mesh,"quaternion",quat);
surfaceMeshShow(mesh,Title="Rotated Mesh")

Rotate Surface Mesh About Pivot Point

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Define the pivot point for rotation.

pivot = [-1 -1 0];

Define a rotation matrix for rotating the surface mesh by 45 degrees about the z-axis.

2 Objects

2-52

rotMatrix = [cosd(45) -sind(45) 0;
 sind(45) cosd(45) 0;
 0 0 1];

Rotate the surface mesh about the pivot point and display the rotated mesh.

rotate(mesh,"rotmat",rotMatrix,pivot);
surfaceMeshShow(mesh,Title="Rotated Mesh");

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

rotMatrix — Rotation matrix
3-by-3 matrix

Rotation matrix, specified as a 3-by-3 matrix.

E — Euler angles
three-element vector

Euler angles, specified as a three-element vector. The values of the vector are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

rotSequence — Sequence of rotation
character vector | string scalar

Sequence of rotation, specified as a character vector or string scalar. You can specify one of these
options.

• "YZY"
• "YXY"
• "ZYZ"
• "ZXZ"
• "XYX"
• "XZX"
• "XYZ"
• "YZX"
• "ZXY"
• "XZY"
• "ZYX"
• "YXZ"

For example, when you specify the sequence as "YZX", the function first rotates the mesh about the
y-axis, then the about new z-axis, followed by the new x-axis. E defines the angles of rotation.
Data Types: char | string

 rotate

2-53

quat — Quaternion array
quaternion object

Quaternion array for 3-D axes rotation, specified as a quaternion object.

pivot — Pivot point
three-element vector

Pivot point about which to rotate the mesh, specified as a three-element vector. The values of the
vector specify the x-, y-, and z-coordinates of the pivot point. The function first shifts the origin to the
pivot point, then rotates the mesh, and lastly shifts the origin back to the original position.

Version History
Introduced in R2022b

See Also
surfaceMesh | translate | transform | scale | crop | simplify | subdivide

2 Objects

2-54

translate
Translate surface mesh

Syntax
translate(mesh,translationVector)
translate(mesh,translationVector,pivot)

Description
translate(mesh,translationVector) translates the surface mesh, with respect to the world
origin, by the values specified in translationVector along the x-, y-, z- axes.

translate(mesh,translationVector,pivot) translates the mesh with respect to the specified
pivot point.

Examples

Translate Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [3 1 3; 3 3 3; 1 3 3; 1 1 3; ...
 3 1 1; 3 3 1; 1 3 1; 1 1 1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create the surface mesh.

mesh = surfaceMesh(vertices,faces);

Define the translation vector, using the mesh center as the pivot point for translation.

translationVec = [1 2 3];
pivot = vertexCenter(mesh);

Translate the surface mesh with respect to its center.

translate(mesh,translationVec,pivot)

Display the translated mesh vertices.

 mesh.Vertices

ans = 8×3

 2 1 4
 2 3 4
 0 3 4

 translate

2-55

 0 1 4
 2 1 2
 2 3 2
 0 3 2
 0 1 2

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

translationVector — Translation along x-, y-, and z-axes
three-element vector

Translation along x-, y-, z-axes, specified as a three-element vector of the form [x y z]. If you do not
specify a pivot point, this translation is with respect to the world origin.

pivot — Pivot point
three-element vector

Pivot point coordinates, specified as a three-element vector of the form [x y z]. The function
translates the mesh with respect to this point.

Version History
Introduced in R2022b

See Also
surfaceMesh | rotate | transform | scale | crop | simplify | subdivide

2 Objects

2-56

removeFaces
Remove faces from surface mesh

Syntax
removeFaces(mesh,faceIDs)
removeFaces(mesh,faceMask)

Description
removeFaces(mesh,faceIDs) removes the faces specified by the face IDs faceIDs from the
surfaceMesh object mesh. The function also removes the corresponding normal vectors and colors
from the mesh.

removeFaces(mesh,faceMask) remove the faces specified by the binary face mask faceMask
from the surfaceMesh object mesh.

Examples

Remove Faces from Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1; ...
 0 0 2; 0 0 -2];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7; ...
 1 4 9; 2 3 9; 5 8 10; 6 7 10];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Remove the faces 13th and 14th from the mesh by specifying their face IDs, remove the resulting
unreferenced vertices from the mesh. Visualize the output.

faceIDs = [13 14];
removeFaces(mesh,faceIDs)
removeDefects(mesh,"unreferenced-vertices")
surfaceMeshShow(mesh,Title="Mesh After Removing Faces")

Remove Faces from Surface Mesh Using Binary Mask

Define mesh vertices for a surface mesh.

 removeFaces

2-57

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1; ...
 0 0 2; 0 0 -2];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7; ...
 1 4 9; 2 3 9; 5 8 10; 6 7 10];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Mark 13,14 vertices as true and remaining vertices as false to generate a binary mask.

faceMask = false(1,mesh.NumFaces);
faceMask([13 14]) = true;

Remove faces 13 and 14 face from the mesh by using the removeFaces function, and remove the
resulting unreferenced vertices. Visualize the output.

removeFaces(mesh,faceMask);
removeDefects(mesh,"unreferenced-vertices")
surfaceMeshShow(mesh,Title="Mesh After Removing Faces")

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

faceIDs — Face IDs
n-element vector

Face IDs, specified as an n-element vector. Each face ID is a unique identifier for a face in the mesh
and is equal to the row number of the face in the Faces property of the surfaceMesh object. n is the
number of faces to remove from the mesh.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

faceMask — Binary mask with mesh faces
N-element logical vector

Binary mask with mesh faces, specified as an N-element logical vector. N is the total number of mesh
faces. If the value of an element is true, the function removes the corresponding face from the mesh.
If an element is false, the function does not remove the corresponding face from the mesh.

Version History
Introduced in R2022b

2 Objects

2-58

See Also
addFaces | addVertices | removeVertices | surfaceMesh | pc2surfacemesh |
readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow

 removeFaces

2-59

removeVertices
Remove vertices from surface mesh

Syntax
removeVertices(mesh,vertexIDs)
removeVertices(mesh,vertexMask)

Description
removeVertices(mesh,vertexIDs) removes the vertices specified by the vertex IDs vertexIDs
from the surfaceMesh object mesh. The function also removes the corresponding normal vectors
and colors from the mesh.

removeVertices(mesh,vertexMask) removes the vertices specified by the binary vertex mask
vertexMask from the surfaceMesh object mesh. The function also removes the corresponding
normal vectors and colors from the mesh.

Examples

Remove Vertices from Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1; ...
 0 0 2; 0 0 -2];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7; ...
 1 4 9; 2 3 9; 5 8 10; 6 7 10];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Remove the 9th and 10th vertices of the surface mesh. Display the updated mesh.

vertexIDs = [9 10];
removeVertices(mesh,vertexIDs)
surfaceMeshShow(mesh,Title="Mesh After Removing Vertices")

Remove Vertices from Surface Mesh Using Binary Mask

Define mesh vertices for a surface mesh.

2 Objects

2-60

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1; ...
 0 0 2; 0 0 -2];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7; ...
 1 4 9; 2 3 9; 5 8 10; 6 7 10];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Generate a binary mask by marking the 9th and 10th vertices as true and remaining vertices as
false.

vertexMask = false(1,mesh.NumVertices);
vertexMask([9 10]) = true;

Remove vertices 9 and 10 by using the removeVertices function, and display the results.

removeVertices(mesh,vertexMask)
surfaceMeshShow(mesh,Title="Mesh After Removing Vertices")

Input Arguments
mesh — Surface mesh
surfaceMesh object

Surface mesh, specified as a surfaceMesh object.

vertexIDs — Vertex IDs
m-element vector

Vertex IDs, specified as an m-element vector. Each vertex ID is a unique identifier for a vertex in the
mesh and is equal to the row number of the vertex in the Vertices property of the surfaceMesh
object. m is the number of vertices to remove from the mesh.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

vertexMask — Binary mask with mesh vertices
M-element logical vector

Binary mask with mesh vertices, specified as an M-element logical vector. M is the total number of
mesh vertices in the mesh. If the value of an element is true, the function removes the vertex with
the corresponding vertex ID from the mesh. If an element is false, the function does not remove the
corresponding vertex from the mesh.

Version History
Introduced in R2022b

 removeVertices

2-61

See Also
addVertices | addFaces | removeFaces | surfaceMesh | pc2surfacemesh | readSurfaceMesh
| writeSurfaceMesh | surfaceMeshShow

2 Objects

2-62

addFaces
Add faces to surface mesh

Syntax
addFaces(mesh,faces)
addFaces(___ ,Name=Value)

Description
addFaces(mesh,faces) adds the specified faces to the surfaceMesh object, mesh.

addFaces(___ ,Name=Value) specifies options using one or more name-value arguments in
addition to the previous syntax. For example, addFaces(mesh,faces,FaceNormals=[1 2 0; 1
1 1; 0 2 2; 4 3 0; 2 1 2; 5 5 0]) specifies the face normals for the surface mesh.

Examples

Add Vertices and Faces to Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Add a new vertex to the surface mesh.

addVertices(mesh,[0 0 2])

Add new faces to surface mesh and display the updated mesh.

faces = [1 4 9; 2 3 9];
addFaces(mesh,faces);
surfaceMeshShow(mesh,Title="Modified Mesh")

Input Arguments
mesh — Surface mesh
surfaceMesh object

 addFaces

2-63

Surface mesh, specified as a surfaceMesh object.

faces — Mesh triangular faces
N-by-3 array

Mesh triangular faces, specified as an N-by-3 matrix. Each row of the array is in the form [V1 V2
V3], specifying the vertex IDs of the vertices which define the triangular face. N is the total number
of faces to add to the mesh.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: addFaces(mesh,faces,FaceNormals=[1 2 0; 1 1 1; 0 2 2; 4 3 0; 2 1 2; 5
5 0])

FaceNormals — Normals for mesh faces
N-by-3 matrix

Normal vectors for the mesh faces, specified as an N-by-3 matrix. Each row of the matrix of in the
form [x y z], specifying the normal for a face. N is the total number of faces to add to the mesh.
Data Types: single | double

FaceColors — Colors for mesh faces
N-by-3 matrix

Color values for the mesh faces, specified as an N-by-3 matrix. Each row of the matrix is of the form
[R G B], specifying the color value for a face. Each value must be in the range [0,1]. N is the total
number of faces to add to the mesh.
Data Types: single | double

Version History
Introduced in R2022b

See Also
removeFaces | addVertices | removeVertices | surfaceMesh | pc2surfacemesh |
readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow

2 Objects

2-64

addVertices
Add vertices to surface mesh

Syntax
addVertices(mesh,vertices)
addVertices(___ ,Name=Value)

Description
addVertices(mesh,vertices) adds the specified vertices to the surfaceMesh object mesh.

addVertices(___ ,Name=Value) specifies options using one or more name-value arguments in
addition to the input arguments from the previous syntax. For example, VertexNormals=[8 -4 4;
4 4 8; -6 6 3; -3 -6 6; 3 -6 -6; 6 6 -3] specifies the normal vectors for the mesh
vertices.

Examples

Add Vertices and Faces to Surface Mesh

Define mesh vertices for a surface mesh.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh,Title="Original Mesh")

Add a new vertex to the surface mesh.

addVertices(mesh,[0 0 2])

Add new faces to surface mesh and display the updated mesh.

faces = [1 4 9; 2 3 9];
addFaces(mesh,faces);
surfaceMeshShow(mesh,Title="Modified Mesh")

Input Arguments
mesh — Surface mesh
surfaceMesh object

 addVertices

2-65

Surface mesh, specified as a surfaceMesh object.

vertices — Mesh vertices
M-by-3 matrix

Mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the form [x y z],
specifying the coordinates of a vertex. Each vertex has a vertex ID equal to N + Mrow, where N is the
ID of the last vertex in mesh and Mrow is the row number of the vertex in vertices. M is the total
number of vertices to add to the mesh.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: mesh(vertices,faces,VertexNormals=[8 -4 4; 4 4 8; -6 6 3; -3 -6 6; 3
-6 -6; 6 6 -3]) specifies the normal vectors for the mesh vertices.

VertexNormals — Normals for mesh vertices
M-by-3 matrix

Normal vectors for the mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the
form [x y z], specifying the normal vector for a vertex. M is the total number of vertices to add to
the mesh.
Data Types: single | double

VertexColors — Colors for mesh vertices
M-by-3 matrix

Color values for the mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the
form [R G B], specifying the color value for a vertex. Each values must be in the range [0,1]. M is
the total number of vertices to add to the mesh.
Data Types: single | double

Version History
Introduced in R2022b

See Also
addFaces | removeVertices | removeFaces | surfaceMesh | pc2surfacemesh |
readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow

2 Objects

2-66

surfaceMesh
Create surface mesh

Description
A surfaceMesh object creates and stores a surface mesh. A surface mesh represents a geometric
surface and consists of vertices, faces, and edges. Using the surfaceMesh object, you can:

• Add and remove mesh vertices and faces
• Perform geometric operations, such as rotate, translate, transform, and scale
• Compute mesh normals
• Crop, simplify, and subdivide a mesh
• Check mesh properties such as whether it is self-intersecting, watertight, or orientable
• Remove degenerate and unreferenced vertices and faces

Creation
Syntax
mesh = surfaceMesh(vertices,faces)
mesh = surfaceMesh(___ ,Name=Value)

Description

mesh = surfaceMesh(vertices,faces) creates a surfaceMesh object with the specified
vertices and faces.

mesh = surfaceMesh(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the arguments from the previous syntax. For example, VertexNormals=[8
-4 4; 4 4 8; -6 6 3; -3 -6 6; 3 -6 -6; 6 6 -3] specifies the normal vectors for the
mesh vertices.

Properties
Vertices — Mesh vertices
M-by-3 matrix

Mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the form [x y z],
specifying the coordinates of a vertex. Each vertex has a vertex ID equal to its row number in the
matrix. M is the total number of vertices in the mesh.

The vertices argument sets this property at object creation.
Data Types: single | double

Faces — Mesh triangular faces
N-by-3 matrix

 surfaceMesh

2-67

Mesh triangular faces, specified as an N-by-3 matrix. Each row of the matrix is in the form [V1 V2
V3], specifying the vertex IDs of the vertices that define the triangular face. N is the number of faces
in the mesh.

The faces argument sets this property at object creation.
Data Types: single | double

VertexNormals — Normal vectors for mesh vertices
M-by-3 matrix

Normal vectors for the mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is in the
form [x y z], specifying the normal vector for a vertex. M is the total number of vertices in the
mesh.

To set this property, specify it at object creation.
Example: mesh(vertices,faces,VertexNormals=[8 -4 4; 4 4 8; -6 6 3; -3 -6 6; 3
-6 -6; 6 6 -3])

Data Types: single | double

VertexColors — Color values for mesh vertices
M-by-3 matrix

Color values for the mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the
form [R G B], specifying the color value for a vertex. Each value must be in the range [0, 1]. M is
the total number of vertices in the mesh.

To set this property, specify it at object creation.
Example: mesh(vertices,faces,VertexColors=[1 0 0; 0 0 1; 0 0 0; 1 1 1 1; 1 1 0;
0 1 1])

Data Types: single | double

FaceNormals — Normals for mesh faces
N-by-3 matrix

Normal vectors for the mesh faces, specified as an N-by-3 matrix. Each row of the matrix is of the
form [x y z], specifying the normal for a face. N is the total number of faces in the mesh.

To set this property, specify it at object creation.
Example: mesh(vertices,faces,FaceNormals=[8 -4 4; 4 4 8; -6 6 3; -3 -6 6; 3 -6
-6; 6 6 -3])

Data Types: single | double

FaceColors — Color for mesh faces
N-by-3 matrix

Color values for the mesh faces, specified as an N-by-3 matrix. Each row of the matrix is of the form
[R G B], specifying the color value for a face. Each value must be in the range [0, 1]. N is the
total number of faces in the mesh.

To set this property, specify it at object creation.

2 Objects

2-68

Example: mesh(vertices,faces,FaceColors=[1 0 0; 0 0 1; 0 0 0; 1 1 1; 1 1 0; 0 1
1])

Data Types: single | double

NumVertices — Number of mesh vertices
positive integer

Number of mesh vertices, stored as a positive integer.

This property is read-only.
Data Types: unit32

NumFaces — Number of mesh faces
positive integer

Number of mesh faces, stored as a positive integer.

This property is read-only.
Data Types: unit32

Object Functions
addVertices Add vertices to surface mesh
addFaces Add faces to surface mesh
removeVertices Remove vertices from surface mesh
removeFaces Remove faces from surface mesh
translate Translate surface mesh
rotate Rotate surface mesh
transform Apply rigid transformation to surface mesh
vertexCenter Find vertex center of surface mesh
scale Scale vertices of surface mesh
computeNormals Compute unit normals for mesh vertices and faces
crop Crop surface mesh
simplify Simplify surface mesh
subdivide Subdivide surface mesh
isEdgeManifold Check if surface mesh is edge-manifold
isOrientable Check if surface mesh is orientable
isSelfIntersecting Check if surface mesh is self-intersecting
isVertexManifold Check if surface mesh is vertex-manifold
isWatertight Check if surface mesh is watertight
removeDefects Remove surface mesh defects

Examples

Create Cuboid Surface Mesh

Define mesh vertices for a cuboid.

vertices = [1 -1 1; 1 1 1; -1 1 1; -1 -1 1; ...
 1 -1 -1; 1 1 -1; -1 1 -1; -1 -1 -1];

Define the mesh faces using the vertices.

 surfaceMesh

2-69

faces = [6 2 1; 1 5 6; 8 4 3; 3 7 8; 6 7 3; 3 2 6; ...
 5 1 4; 4 8 5; 4 1 2; 2 3 4; 7 6 5; 5 8 7];

Create the surface mesh.

mesh = surfaceMesh(vertices,faces);

Display the surface mesh.

surfaceMeshShow(mesh,Title="Cuboid Mesh")

Version History
Introduced in R2022b

See Also
pc2surfacemesh | readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow |
smoothSurfaceMesh | clusterConnectedFaces

2 Objects

2-70

findPose
Find absolute pose of 2-D lidar scan in the map

Syntax
absPose = findPose(scanMapObj,scan)
absPose = findPose(scanMapObj,scan,positionEstimate)
[absPose,scanID,score] = findPose(___)
[___] = findPose(___ ,Name=Value)

Description
absPose = findPose(scanMapObj,scan) finds the absolute pose for a scan in the map matching
the input scan.

absPose = findPose(scanMapObj,scan,positionEstimate) specifies a position estimate for
the input scan with respect to the map. This reduces the computation time of the function.

[absPose,scanID,score] = findPose(___) returns the scan ID of the matching scan and the
corresponding correlation score, using any combination of input arguments from previous syntaxes.

[___] = findPose(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
findPose(scanMapObj,scan,positionEstimate,SearchRadius=10) searches for a matching
scan in the map within a 10 meter radius of the position estimate.

Examples

Find Absolute Pose of 2-D Lidar Scans in Map

Load a MAT file containing 2-D lidar scans and a warehouse map into the workspace.

data = load("wareHouse.mat");
scanMapObj = data.wareHouseMap;
lidarScans = data.wareHouseScans;

Display the warehouse map.

ax = show(scanMapObj,ShowTrajectory=false);

Find the absolute pose of the first scan in the map by using the findPose function. Specify the pose
estimate of the scan as [0 0] and the search radius as 5 meters.

absPose = findPose(scanMapObj,lidarScans{1},[0 0],SearchRadius=5);

Display the pose of the first scan in the map.

showShape("circle",[absPose(1:2) 0.2],Color="g",Parent=ax)

 findPose

2-71

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

scan — Scan for which to find absolute pose
lidarScan object

Scan for which to find the absolute pose, specified as lidarScan object

positionEstimate — Position estimate of input scan
two-element vector

Position estimate of the input scan with respect to the map, specified as a two-element vector of the
form [x y], where x and y represent the position of the scan in meters. The values are relative to the
world origin.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

2 Objects

2-72

Example: findPose(scanMapObj,scan,SearchRadius=10) searches for a matching scan in the
map within a 10 meter radius of the position estimate.

SearchRadius — Search radius for identifying matching scan
8 (default) | positive scalar

Search radius for identifying a matching scan in the map, specified as a positive scalar. This
argument specifies the radius to search around the specified positionEstimate, in meters. Tune
this argument based on the vehicle trajectory. Increasing this value can increase the computation
time.

Note Use this argument only when you specify the positionEstimate the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MatchThreshold — Minimum correlation score for matching scan
100 (default) | positive scalar

Minimum correlation score for a matching scan in the map, specified as a positive scalar. A higher
value can result in a better match.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumMatches — Maximum number of matching scans
1 (default) | positive integer

Maximum number of matching scans to identify, specified as a positive integer.

Note When this value is greater than 1, the function returns absPose as a matrix, where each row
corresponds to a matching scan. The number of rows in the matrix is equal to the number of
matching scans.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
absPose — Absolute pose of scan
three-element vector | M-by-3 matrix

Absolute pose of the scan with respect to the map, returned as a three-element vector of the form [x y
Θ], where x and y define the position in meters, and Θ defines the orientation of the input scan in
radians. The values are relative to the world origin.

Note When the value of NumMatches is greater than 1, the function returns absPose as an M-by-3
matrix, where each row corresponds to a matching scan. M is the number of matching scans.

scanID — Scan ID of matching scan
positive integer | vector

Scan ID of the matching scan in the map, returned as a positive integer.

 findPose

2-73

Note When the value of NumMatches is greater than 1, the function returns scanID as an M-
element vector, where each value corresponds to a matching scan. M is the number of matching
scans.

Data Types: double

score — Correlation score of matching scan
positive scalar | vector

Correlation score of the matching scan to the input scan, returned as a positive scalar. A higher score
indicates a better match.

Note When the value of NumMatches is greater than 1, the function returns score as an M-element
vector, where each value corresponds to a matching scan. M is the number of matching scans.

Data Types: double

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | addScan | updateScanPoses | detectLoopClosure |
deleteLoopClosure | show

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

2 Objects

2-74

show
Display 2-D lidar scans and lidar sensor trajectory

Syntax
show(scanMapObj)
ax = show(scanMapObj)
[___] = show(___ ,Name=Value)

Description
show(scanMapObj) displays the map defined by the lidarscanmap object scanMapObj, with all
lidar scans overlaid at their estimate poses in the map. The function also displays the sensor
trajectory.

ax = show(scanMapObj) displays the lidar scan map and returns the axes handle ax.

[___] = show(___ ,Name=Value) specifies options using one or more name-value arguments in
addition to any combination of arguments from previous syntaxes. For example,
show(scanMapObj,ShowTrajectory=False) displays the pose graph of lidar scans, but not the
sensor trajectory.

Examples

Build and Visualize Map by Adding 2-D Lidar Scans

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 15 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:15
 addScan(scanMapObj,scans{currentID});
end

Visualize the map and the sensor trajectory.

figure
show(scanMapObj);

 show

2-75

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: show(scanMapObj,ShowTrajectory=False) displays the pose graph of lidar scans, but
not the sensor trajectory.

Parent — Axes on which to plot map
Axes object | UIAxes object

Axes on which to plot lidar scan map, specified as an Axes object or an UIAxes object. For more
information, see axes, uiaxes documentation.

ShowTrajectory — Sensor trajectory map
true or 1 (default) | false or 0

2 Objects

2-76

Sensor trajectory map, specified as a logical 1 (true) or 0 (false). Specify this as false to not
display the sensor trajectory.
Data Types: logical

ShowMap — Lidar scan map environment
true or 1 (default) | false or 0

Lidar scan map environment, specified as a logical 1 (true) or 0 (false). Specify this as false to
not display the map environment.
Data Types: logical

Output Arguments
ax — Axes of lidar scan map plot
Axes object | UIAxes object

Axes of the lidar scan map plot, returned as an Axes object or an UIAxes object. For more
information, see axes, uiaxes documentation.

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | addScan | findPose | updateScanPoses | copy

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 show

2-77

updateScanPoses
Update absolute poses of 2-D lidar scans

Syntax
updateScanPoses(scanMapObj,absPoses)

Description
updateScanPoses(scanMapObj,absPoses) updates the absolute poses of all lidar scans in the
lidarscanmap object scanMapObj.

Examples

Update Absolute Poses of 2-D Lidar Scans in Map

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 3 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:3
 addScan(scanMapObj,scans{currentID});
end

Update absolute poses of the scans.

absPoses = [1 0 0; 1 -2 -5; 1 3 -1];
updateScanPoses(scanMapObj,absPoses);

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

absPoses — Absolute poses of 2-D lidar scans
M-by-3 matrix

Absolute poses of 2-D lidar scans in the map, specified as an M-by-3 matrix, where M is the number of
scans in the lidarscanmap object. Each row of the matrix is of the form [x y Θ], where x and y
define the position in meters, and Θ defines the orientation of the scan in radians.

2 Objects

2-78

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | findPose | addScan | detectLoopClosure | show

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 updateScanPoses

2-79

poseGraph
Create 2-D pose graph from lidar scan map

Syntax
pGraph = poseGraph(scanMapObj)

Description
pGraph = poseGraph(scanMapObj) creates a pose graph from the 2-D lidar scan map object
scanMapObj. You can use this pose graph for inspection, visualization, and pose graph optimization.

This function requires Navigation Toolbox™ version 2.3 or higher.

To optimize the pose graph output, use the optimizePoseGraph function.

Examples

Create Pose Graph from 2-D Lidar Scans

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 15 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:15
 addScan(scanMapObj,scans{currentID});
end

Create a pose graph for the scanMapObj.

poseGraph(scanMapObj);

Visualize the map.

figure
show(scanMapObj);

2 Objects

2-80

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

Output Arguments
pGraph — Pose graph
poseGraph object

Pose graph of the input lidar scan map, returned as a poseGraph object.

Version History
Introduced in R2022b

See Also
lidarscanmap | findPose | addScan | updateScanPoses | detectLoopClosure | show

 poseGraph

2-81

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

2 Objects

2-82

copy
Create a copy of lidarscanmap object

Syntax
newMapObj = copy(scanMapObj)

Description
newMapObj = copy(scanMapObj) creates a copy of lidarscanmap object scanMapObj with the
same object properties.

Examples

Create Copy of lidarscanmap Object

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

orgMapObj = lidarscanmap;

Add the first scan to the orgMapObj object.

addScan(orgMapObj,scans{1});

Create a copy of the orgMapObj object, then add the second scan to the copied object, newMapObj.

newMapObj = copy(orgMapObj);
addScan(newMapObj,scans{2});

Display the number of scans in the original and the copied objects.

 disp([orgMapObj.NumScans newMapObj.NumScans])

 1 2

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

 copy

2-83

Output Arguments
newMapObj — Copy of input lidar scan map
lidarscanmap object

Copy of the input lidar scan map, returned as a lidarscanmap object.

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | addScan | findPose | updateScanPoses | detectLoopClosure |
show

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

2 Objects

2-84

deleteLoopClosure
Delete loop closure between 2-D lidar scans

Syntax
deleteLoopClousure(scanMapObj,fromScanID,toScanID)

Description
deleteLoopClousure(scanMapObj,fromScanID,toScanID) deletes the existing loop closure
connection between the scans with scan IDs specified by fromScanID and toScanID from the
lidarscanmap object scanMapObj.

Examples

Delete Loop Closure Connections from Map

Load a MAT file containing a map of a warehouse into the workspace.

data = load("wareHouse.mat");
scanMapObj = data.wareHouseMap;

Display the list of loop closure connections in the lidarscanmap object scanMapObj. Also, display
the number of loop closures.

scanMapObj.LoopClosureIDs

ans=13×2 table
 FromScanID ToScanID
 __________ ________

 4 59
 4 60
 4 61
 4 62
 4 63
 4 64
 4 65
 11 66
 11 67
 11 68
 11 69
 11 70
 11 71

disp(scanMapObj.NumLoopClosures)

 13

Delete the loop closure connection between scans 4 and 59 by using the deleteLoopClosure
function. Then check the number of loop closures in scanMapObj object.

 deleteLoopClosure

2-85

deleteLoopClosure(scanMapObj,4,59);
disp(scanMapObj.NumLoopClosures)

 12

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

fromScanID — Scan ID of scan at beginning of loop closure
positive integer | vector

Scan ID of the scan at the beginning of the loop closure, specified as a positive integer or vector. To
delete multiple loop closure connections in the map, you must specify the value as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

toScanID — Scan ID of scan at end of loop closure
positive integer | vector

Scan ID of the scan at the end of the loop closure, specified as a positive integer or vector. To delete
multiple loop closure connections in the map, you must specify the value as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | detectLoopClosure | addLoopClosure | findPose |
updateScanPoses

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

2 Objects

2-86

addLoopClosure
Add loop closure to the map

Syntax
addLoopClosure(scanMapObj,fromScanID,toScanID,relPose)
addLoopClosure(scanMapObj,fromScanID,toScanID,relPose,informationMatrix)

Description
addLoopClosure(scanMapObj,fromScanID,toScanID,relPose) adds a loop closure between
the scans with scan IDs fromScanID and toScanID to the lidarscanmap object, where relPose
specifies the relative pose between the scans.

addLoopClosure(scanMapObj,fromScanID,toScanID,relPose,informationMatrix)
specifies the information matrix that represents the uncertainty in the relative pose measurement.

Examples

Detect and Add Loop Closures to Map

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 70 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:70
 addScan(scanMapObj,scans{currentID});
end

Detect loop closures in the map by using the detectLoopClosure function. The function searches
the map for a previous scan matching the most recent scan. For best results, adjust the excluded
views and the search radius according to the sensor trajectory.

[~,scanID,~] = detectLoopClosure(scanMapObj,NumExcludeViews=20,SearchRadius=5)

scanID = 11

Add the loop closure detected between the scans 70 and 11 to the scanMapObj by using the
addLoopClosure function. Display the loop closure connection.

addLoopClosure(scanMapObj,70,11,[2 2 0])
disp(scanMapObj.LoopClosureIDs)

 FromScanID ToScanID
 __________ ________

 addLoopClosure

2-87

 70 11

Visualize the map and the sensor trajectory.

figure
show(scanMapObj);

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

fromScanID — Scan ID of scan at beginning of loop closure
positive integer | vector

Scan ID of the scan at the beginning of the loop closure, specified as a positive integer or vector. To
add multiple loop closure connections in the map, you must specify the value as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

toScanID — Scan ID of scan at end of loop closure
positive integer | vector

2 Objects

2-88

Scan ID of the scan at the end of the loop closure, specified as a positive integer or vector. To add
multiple loop closure connections in the map, you must specify the value as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

relPose — Relative pose between scans
three-element vector | M-by-3 matrix

Relative pose between the scans in the loop closure, specified as a three-element vector or an M-by-3
matrix. To add more than one loop closure connection, specify the value as a matrix, where M is the
number of loop closure connections. Each row of the matrix is of the form [x y Θ], where x and y
define the translational offset in meters, and Θ defines the rotational offset between the scans in
radians.

informationMatrix — Uncertainty in relative pose measurement
M-element cell array

Uncertainty in the relative pose measurement, specified as an M-element cell array, where M is the
number of loop closure connections. Each cell contains a 3-by-3 positive definite matrix.

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | addScan | findPose | updateScanPoses | detectLoopClosure |
deleteLoopClosure | show

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 addLoopClosure

2-89

detectLoopClosure
Detect loop closure in 2-D lidar scan map

Syntax
relPose = detectLoopClosure(scanMapObj)
[relPose,scanID,score] = detectLoopClosure(scanMapObj)
[___] = detectLoopClosure(___ ,Name=Value)

Description
relPose = detectLoopClosure(scanMapObj) searches for a scan matching the most recent
scan of the scanMapObj object to detect loop closures in the map. The function returns the relative
pose relPose between the matched scan and the most recent scan.

[relPose,scanID,score] = detectLoopClosure(scanMapObj) returns the scan ID of the
matched scan and its corresponding correlation score.

[___] = detectLoopClosure(___ ,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of arguments from previous syntaxes. For example,
detectLoopClosure(scanMapObj,SearchRadius=10) searches for a matching scan in the map
within a 10 meter radius of the most recent scan.

Examples

Detect and Add Loop Closures to Map

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 70 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:70
 addScan(scanMapObj,scans{currentID});
end

Detect loop closures in the map by using the detectLoopClosure function. The function searches
the map for a previous scan matching the most recent scan. For best results, adjust the excluded
views and the search radius according to the sensor trajectory.

[~,scanID,~] = detectLoopClosure(scanMapObj,NumExcludeViews=20,SearchRadius=5)

scanID = 11

2 Objects

2-90

Add the loop closure detected between the scans 70 and 11 to the scanMapObj by using the
addLoopClosure function. Display the loop closure connection.

addLoopClosure(scanMapObj,70,11,[2 2 0])
disp(scanMapObj.LoopClosureIDs)

 FromScanID ToScanID
 __________ ________

 70 11

Visualize the map and the sensor trajectory.

figure
show(scanMapObj);

Input Arguments
scanMapObj — 2-D lidar scan map
lidarscanmap object

2-D lidar scan map, specified as a lidarscanmap object.

 detectLoopClosure

2-91

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectLoopClosure(scanMapObj,SearchRadius=10) searches for a matching scan
within a 10 meter radius of the most recent scan.

SearchRadius — Search radius to identify matching scan
8 (default) | positive scalar

Search radius to identify a matching scan in the map, specified as a positive scalar. The function
searches in the specified radius around the most recent scan. Increasing this value can increase the
computation time of the function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MatchThreshold — Minimum correlation score to identify matching scan
100 (default) | positive scalar

Minimum correlation score to identify a matching scan, specified as a positive scalar. A higher value
can result a better match and decrease false positives.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumExcludeViews — Number of recently added views to exclude
10 (default) | positive integer

Number of recently added views to exclude for loop closure detection, specified as a positive integer.
Increase this value when multiple recently added views belong to the same region of the map.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumMatches — Number of matches to output
1 (default) | positive integer

Number of matches to output, specified as a positive integer.

Note When this value is greater than 1, the function returns relPose as a matrix, where each row
specifies a matching scan. The number of rows in the matrix is equal to the NumMatches value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
relPose — Relative pose between matched scan and most recent scan
three-element vector (default) | matrix

Relative pose between the matched scan and the most recent scan of the map, returned as a three-
element vector of the form [x y Θ], where x and y define the translational offset in meters, and Θ
defines the rotational offset in radians.

2 Objects

2-92

Note When the value of NumMatches is greater than 1, the function returns relPose as a matrix,
where each row specifies a matching scan. The number of rows in the matrix is equal to the
NumMatches value.

scanID — Scan ID of matching scan
positive integer | vector

Scan ID of the matching scan in the map, returned as a positive integer.

Note When the value of NumMatches is greater than 1, the function returns scanID as an M-
element vector, where each value corresponds to a matching scan. M is the number of matching
scans.

Data Types: double

score — Correlation score of matching scan
positive scalar | vector

Correlation score of the matching scan to the input scan, returned as a positive scalar. A higher score
indicates a better match.

Note When the value of NumMatches is greater than 1, the function returns score as an M-element
vector, where each value corresponds to a matching scan. M is the number of matching scans.

Data Types: double

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | addLoopClosure | deleteLoopClosure | findPose |
updateScanPoses

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 detectLoopClosure

2-93

addScan
Add 2-D lidar scan to map

Syntax
addScan(scanMapObj,currScan)
addScan(scanMapObj,currScan,relPose)
addScan(___ ,Name=Value)
isScanAdded = addScan(___)

Description
addScan(scanMapObj,currScan) adds the specified 2-D lidar scan currScan to the most recent
scan of the lidarscanmap object scanMapObj. The function uses scan matching to correlate this
scan to the most recent one, then adds the scan to the scanMapObj.

addScan(scanMapObj,currScan,relPose) specifies the relative pose between the input scan and
the most recent scan of the map.

addScan(___ ,Name=Value) specifies options using one or more name-value arguments in addition
to any combination of arguments from previous syntaxes. For example,
addScan(scanMapObj,currScan,ScanID=5) adds the input scan relative to the fifth scan in
scanMapObj.

isScanAdded = addScan(___) returns an indication of whether the input scan is added or
rejected.

Examples

Build and Visualize Map by Adding 2-D Lidar Scans

Load a MAT file containing 2-D lidar scans into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the first 15 scans from the input data to the scanMapObj object by using the addScan function.

for currentID = 1:15
 addScan(scanMapObj,scans{currentID});
end

Visualize the map and the sensor trajectory.

figure
show(scanMapObj);

2 Objects

2-94

Input Arguments
scanMapObj — Map of 2-D lidar scans
lidarscanmap object

Map of 2-D lidar scans, specified as a lidarscanmap object

currScan — Input scan to add to map
lidarScan object

Input scan to add to the map, specified as alidarScan object

relPose — Relative pose between input scan and most recent scan
three-element vector

Relative pose between the input scan and the most recent scan of the map, specified as a three-
element vector of the form [x y Θ], where x and y define the translational offset in meters, and Θ
defines the rotational offset of the input scan in radians.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 addScan

2-95

Example: addScan(scanMapObj,currScan,ScanID=5) adds the input scan relative to the fifth
scan in the scanMapObj object.

RelPoseEstimate — Initial estimate for relative pose between input scan and most recent
scan
[0 0 0] (default) | three-element vector

Initial estimate for relative pose between the input scan and the most recent scan of the map,
specified as a three-element vector of the form [x y Θ], where x and y define the translational offset in
meters, and Θ defines the rotational offset between the scans in radians. The values are relative to
the world origin.

The function computes the relative pose faster when the RelPoseEstimate is close to the true
relative pose.

Note Use RelPoseEstimate only when you do not specify the relPose input.

PoseTolerance — Tolerance for relative pose estimate
three-element vector

Tolerance for the relative pose estimate between the input scan and the most recent scan of the map,
specified as a three-element vector of the form [x y Θ], where x and y define the translational
tolerance in meters, and Θ defines the rotational tolerance in radians.

If you do not specify this value, the function internally computes it as
[scanMapObj.MaxLidarRange/2 scanMapObj.MaxLidarRange/2 pi/2].

Note Use PoseTolerance only when you do not specify the relPose input.

InformationMatrix — Uncertainty in relative pose measurement
eye(3) (default) | 3-by-3 positive definite matrix

Uncertainty in the relative pose measurement between the input scan and the most recent scan of the
map, specified as a 3-by-3 positive definite matrix.

MovementThreshold — Minimum pose change required to add input scan
[0 0] (default) | two-element vector

Minimum pose change required to add the input scan to the map, specified as a two-element vector of
the form [translation rotation], where translation and rotation specify the translational and the
rotational thresholds, respectively. The function adds the input scan to the scanMapObj object only
when the relative pose change of the input scan exceeds both values in the MovementThreshold.

ScanID — Scan to which input scan is relative
positive integer

Scan ID of the scan to which the input scan is relative to, specified as a positive integer. The value
must be in the range [1, scanMapObj.NumScans]. By default, the function adds the input scan
relative to the last scan in the scanMapObj object.

Note You can specify ScanID only when the scanMapObj object has at least one scan.

2 Objects

2-96

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
isScanAdded — Check if input scan is added
true | false

Check if the input scan is added to the scanMapObj object, returned as a logical true or false. The
function returns true when the scan is added to the map.

Version History
Introduced in R2022b

See Also
lidarscanmap | poseGraph | updateScanPoses

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 addScan

2-97

lidarscanmap
Simultaneous localization and mapping using 2-D lidar scans

Description
A lidarscanmap object performs simultaneous localization and mapping (SLAM) using the 2-D lidar
scans. The lidarscanmap object uses a graph-based SLAM algorithm to create a map of an
environment from 2-D lidar scans. First, the algorithm builds a pose graph by linking the input scans
using their absolute poses. Then, it uses a scan-matching approach to detect loop closures to
minimize any odometry drift.

Using the lidarscanmap object, you can:

• Store and add lidar scans incrementally.
• Detect, add, and delete loop closures.
• Find and update the absolute poses of the scans.
• Generate and visualize a pose graph.

To further optimize the pose graph, use the optimizePoseGraph function.

Creation

Syntax
scanMapObj = lidarscanmap
scanMapObj = lidarscanmap(gridResolution,maxLidarRange)

Description

scanMapObj = lidarscanmap creates a lidarscanmap object with default property values.

scanMapObj = lidarscanmap(gridResolution,maxLidarRange) specifies the resolution of
the occupancy grid map and maximum range of the lidar sensor. The gridResolution and
maxLidarRange arguments set the GridResolution and the MaxLidarRange properties,
respectively.

Properties
ScanAttributes — 2-D lidar scans and absolute poses
table

2-D lidar scans and their absolute poses, stored as a table, where each row represents a lidar scan.
The table has these columns.

• ScanID — Unique identifier for the scan, stored as a positive integer.
• LidarScan — 2-D lidar scan, stored as a lidarScan object.

2 Objects

2-98

• AbsolutePose — Absolute pose of the lidar scan, stored as a three-element vector of the form [x
y Θ], where x and y define the position in meters, and Θ defines the orientation of the input scan
in radians.

This property is read-only.

ConnectionAttributes — Connections between lidar scans
table

Connections between lidar scans, stored as a table, where each row represents a connection. The
table has these columns.

• FromScanID — ScanID of the scan at the beginning of the connection, stored as a positive
integer.

• ToScanID — ScanID of the scan at the end of the connection, stored as a positive integer.
• RelativePose — Relative pose of the corresponding scan specified by ToScanID with respect to

the connected scan specified by FromScanID, stored as a three-element vector of the form [x y Θ],
where x and y define the translational offset in meters, and Θ defines the rotational offset between
the scans in radians.

• InformationMatrix — Uncertainty in the relative pose measurement, stored as a 3-by-3 matrix.
This matrix is the inverse of the covariance matrix.

This property is read-only.

LoopClosureIDs — Loop closure between lidar scans
table

Loop closure connections between lidar scans, stored as a table, where each row represents a loop
closure. The table has these columns.

• FromScanID — ScanID of the scan at the beginning of the connection, stored as a positive
integer.

• ToScanID — ScanID of the scan at the end of the connection, stored as a positive integer.

This property is read-only.

NumScans — Number of lidar scans
positive integer

Number of lidar scans in the lidarscanmap object, specified as a positive integer.

This property is read-only.
Data Types: double

NumConnections — Number of connections
positive integer

Number of connections in the lidarscanmap object, specified as a positive integer.

This property is read-only.
Data Types: double

 lidarscanmap

2-99

NumLoopClosures — Number of loop closure connections
positive integer

Number of loop closure connections in the lidarscanmap object, specified as a positive integer.

This property is read-only.
Data Types: double

GridResolution — Resolution of occupancy grid map
positive scalar

Resolution of the occupancy grid map, specified as a positive scalar.

To set this property, you must specify it at object creation.
Data Types: double

MaxLidarRange — Maximum range of lidar sensor
positive scalar

Maximum range of the lidar sensor, specified as a positive scalar. Units are in meters.

To set this property, you must specify it at object creation.
Data Types: double

Object Functions
addScan Add 2-D lidar scan to map
detectLoopClosure Detect loop closure in 2-D lidar scan map
addLoopClosure Add loop closure to the map
deleteLoopClosure Delete loop closure between 2-D lidar scans
poseGraph Create 2-D pose graph from lidar scan map
findPose Find absolute pose of 2-D lidar scan in the map
updateScanPoses Update absolute poses of 2-D lidar scans
copy Create a copy of lidarscanmap object
show Display 2-D lidar scans and lidar sensor trajectory

Examples

Localize 2-D Lidar Scans in Map

Load a MAT file containing 2-D lidar scans and a warehouse map into the workspace.

data = load("wareHouse.mat");
scans = data.wareHouseScans;

Create a lidarscanmap object.

scanMapObj = lidarscanmap;

Add the scans from the input data to the scanMapObj object by using the addScan function.

2 Objects

2-100

for currentID = 1:70
 addScan(scanMapObj,scans{currentID});
end

Display the warehouse map.

ax = show(scanMapObj,ShowTrajectory=false);
hold on

Find the absolute pose of the first scan in the map by using the findPose function. Specify the pose
estimate of the scan as [0 0] and the search radius as 5 meters.

absPose = findPose(scanMapObj,scans{1},[0 0],SearchRadius=5);

Display the pose of the first scan in the map.

showShape("circle",[absPose(1:2) 0.2],Color="g",Parent=ax)

Iterate the previous two steps to localize the remaining scans in the map and visualize the results.

for n = 2:numel(scans)
 currentScan = scans{n};

 % Use the absolute pose of the previous scan as the pose estimate for
 % the next scan
 poseEstimate = absPose(1:2);
 absPose = findPose(scanMapObj,currentScan,poseEstimate,SearchRadius=5);

 % Display the pose of the current scan in the map
 pose = [absPose(1:2) 0.05];
 showShape("circle",pose,Color="b")
end
hold off

 lidarscanmap

2-101

Version History
Introduced in R2022b

See Also
poseGraph | findPose | addScan | detectLoopClosure | show

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

2 Objects

2-102

pcmaploam
Create map of LOAM feature points for map building

Description
The pcmaploam object creates a map of lidar odometry and mapping (LOAM) feature points. LOAM
feature points represent edge points and surface points that are detected using the LOAM algorithm.
Use this object for incremental map building workflows. Use the findPose function to find the
optimized absolute pose that aligns the points to the map, and use the addPoints function to add
points to the map.

Creation
Syntax
loamMap = pcmaploam(voxelSize)
loamMap = pcmaploam(voxelSize,mapSize)

Description

loamMap = pcmaploam(voxelSize) returns an empty LOAM map with the voxel size set by the
voxelSize argument.

loamMap = pcmaploam(voxelSize,mapSize) also specifies the size of the map along each axis
(x, y, and z). By default, using the addPoints function to add points outside the existing LOAM map
expands the map. If you specify the mapSize argument, the pcmaploam object instead discards
points outside the specified boundaries. The mapSize argument sets the MapSize property.

Use this syntax to improve the speed of the findPose and addPoints functions when mapping large
areas.

Properties
Points — Points in LOAM map
M-by-3 matrix

Points in the LOAM map, specified as an M-by-3 matrix, where M is the number of points. Each row
specifies the [x y z] coordinates of a point.

VoxelSize — Voxel size to use for downsampling map points
positive scalar

Voxel size to use for downsampling map points, specified as a positive scalar.

MapSize — Size of LOAM map
[[Inf Inf Inf] | three-element vector

Size of the LOAM map, specified as a three-element vector of the form [dx dy dz].

 pcmaploam

2-103

XLimits — Range of LOAM map along x-axis
[0 0] (default) | two-element vector

Range of the LOAM map along the x-axis, specified as a two-element vector of the form [xmin xmax].

YLimits — Range of LOAM map along y-axis
[0 0] (default) | two-element vector

Range of the LOAM map along the y-axis, specified as a two-element vector of the form [ymin ymax].

ZLimits — Range of LOAM map along z-axis
[0 0] (default) | two-element vector

Range of LOAM map along the z-axis, specified as a two-element vector of the form [zmin zmax].

Object Functions
addPoints Add LOAM points to map
findPose Find absolute pose of points in map
show Visualize LOAM map

Examples

Create LOAM Map

Create a map to store LOAM feature points.

voxelSize = 0.1;
loamMap = pcmaploam(voxelSize);

Create a velodyneFileReader object to read point cloud data from a PCAP file.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read the first point cloud from the file into the workspace.

ptCloud1 = readFrame(veloReader,1);

Detect LOAM feature points in the point cloud.

points1 = detectLOAMFeatures(ptCloud1);

Downsample the less planar surface points to improve registration speed.

gridStep = 1;
points1 = downsampleLessPlanar(points1,gridStep);

Add the LOAM points of the first point cloud to the map.

absPose = rigidtform3d;
addPoints(loamMap,points1,absPose)

Read the fifth point cloud, and detect the LOAM feature points in it.

ptCloud2 = readFrame(veloReader,5);
points2 = detectLOAMFeatures(ptCloud2);

2 Objects

2-104

Downsample the less planar surface points.

points2 = downsampleLessPlanar(points2,gridStep);

Get a relative pose estimate by using the pcregisterloam function.

relPose = pcregisterloam(points2,points1);

Find the absolute pose of the points from the fifth point cloud in the map.

absPose = findPose(loamMap,points2,relPose);

Add the LOAM points from the fifth point cloud to the map.

addPoints(loamMap,points2,absPose)

Visualize the map.

show(loamMap,MarkerSize=20)

Version History
Introduced in R2022b

 pcmaploam

2-105

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Limitations:

• The show function of this object does not support code generation.
• When you add points by using the addPoints object function, the Location property of all

points in the points input must have the same datatype.

See Also
Objects
LOAMPoints

Functions
pcregisterloam | detectLOAMFeatures

2 Objects

2-106

lidarSensor

Simulate lidar sensor readings

Description
The lidarSensor System object simulates a lidar sensor mounted on an ego vehicle and outputs
point cloud data for a given scene. The generated data is with respect to the ego vehicle coordinate
system based on the sensor pose and the actors present in the scene. You can use the
drivingScenario object to create a scenario containing actors and trajectories, then generate the
point cloud data for the scenario by using the lidarSensor object.

To simulate lidar sensor using this object:

1 Create the lidarSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lidar = lidarSensor
lidar = lidarSensor(Name=Value)

Description

lidar = lidarSensor creates a lidarSensor object with default property values. You can use
this object to generate lidar point cloud data for a given 3-D environment.

lidar = lidarSensor(Name=Value) sets the properties of the object using one or more name-
value arguments. For example, lidarSensor(UpdateRate=0.2) creates a lidarSensor object
that generates point cloud detections at every 0.2 seconds.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorIndex — Unique identifier for sensor
1 (default) | positive integer

 lidarSensor

2-107

Unique identifier for the sensor, specified as a positive integer. In a multisensor system, this index
distinguishes different sensors from one another.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HostID — ActorID of ego vehicle
1 (default) | positive integer

ActorID of the ego vehicle, specified as a positive integer. The ego vehicle is the actor on which the
sensor is mounted, and ActorID is the unique identifier for an actor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UpdateRate — Time interval between consecutive sensor updates
0.1 (default) | positive scalar

Time interval between two consecutive sensor updates, specified as a positive scalar. The
lidarSensor object generates new detections at the interval specified by this property. The value
must be an integer multiple of the simulation time. Updates requested from the sensor in between the
update intervals contain no detections. Units are in seconds.
Data Types: single | double

Position — Sensor center position
[1.5 0 1.6] (default) | [x y height]

Sensor center position, specified as a three-element vector of the form [x y height]. The values of x
and y represent the location of the sensor with respect to the x- and y-axes of the ego vehicle
coordinate system. height is the height of the sensor above the ground. The default value defines a
lidar sensor mounted on the front edge of the roof of a sedan. Units are in meters.
Data Types: single | double

Orientation — Sensor orientation
[0 0 0] (default) | three-element vector of form [roll pitch yaw]

Sensor orientation, specified as a three-element vector of the form, [roll pitch yaw]. These values are
with respect to the ego vehicle coordinate system. Units are in degrees.

• roll — The roll angle is the angle of rotation around the front-to-back axis, which is the x-axis of
the ego vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when
looking in the positive direction of the x-axis.

• pitch — The pitch angle is the angle of rotation around the side-to-side axis, which is the y-axis of
the ego vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when
looking in the positive direction of the y-axis.

• yaw — The yaw angle is the angle of rotation around the vertical axis,which is the z-axis of the ego
vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when looking
in the positive direction of the z-axis. This rotation appears counter-clockwise when viewing the
vehicle from above.

Data Types: single | double

MaxRange — Maximum detection range of sensor
120 (default) | positive scalar

2 Objects

2-108

Maximum detection range of the lidar sensor, specified as a positive scalar in meters. The sensor
cannot detect roads and actors beyond this range.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RangeAccuracy — Accuracy of sensor range measurement
0.002 (default) | positive scalar

Accuracy of the sensor range measurement, specified as a positive scalar. Units are in meters.
Data Types: single | double

HasNoise — Point cloud data has added noise
true (default) | false

Point cloud data has added noise, specified as true or false. When set to true, the function adds
random Gaussian noise to each point in the point cloud using the RangeAccuracy property as one
standard deviation. Otherwise, the data has no noise.

Note When you specify the FogVisibilty and Rainrate properties while HasNoise value is set to
true, the function adds noise points with high intensity values. The ActorID and the ClassID of
these noise points in 0 in the clusters output.

Data Types: logical

HasOrganizedOutput — Output point cloud is organized
true (default) | false

Output point cloud is organized, specified as true or false.

• true — The function returns an organized point cloud of the form M-by-N-by-3, where M is the
number of elevation channels and N is the number of azimuth channels in the point cloud.

• false — The function returns an unorganized point cloud of the form P-by-3, where P is the
number of points in the point cloud.

Data Types: logical

AzimuthResolution — Azimuth resolution of lidar sensor
0.16 (default) | positive scalar

Azimuth resolution of the lidar sensor, specified as a positive scalar in degrees.
Data Types: single | double

ElevationResolution — Elevation resolution of lidar sensor
1.25 (default) | positive scalar

Elevation resolution of the lidar sensor, specified as a positive scalar in degrees.
Data Types: single | double

AzimuthLimits — Azimuth limits of lidar sensor
[-180 180] (default) | two-element vector

 lidarSensor

2-109

Azimuth limits of the lidar sensor, specified as a two-element vector of the form [min max]. The values
must be in the range [-180, 180], max must be greater than min. Units are in degrees.
Data Types: single | double

ElevationLimits — Elevation limits of lidar sensor
[-20 20] (default) | two-element vector

Elevation limits of the lidar sensor, specified as a two-element vector of the form [min max]. The
values must be in the range [-180, 180], max must be greater than min. Units are in degrees.
Data Types: single | double

ElevationAngles — Elevation angles of lidar sensor
[] (default) | N-element vector

Elevation angles of the lidar sensor, specified as an N-element vector. N is the number of elevation
channels. The values must be in the range [-180, 180]. Units are in degrees.
Data Types: single | double

ActorProfiles — Physical characteristics of actors
[] (default) | structure | L-element array of structures

Physical characteristics of the actors in the scene, specified as a structure or as an L-element array of
structures. L is the number of actors in the scene.

To generate an array of actor profile structures for your driving scenario, use the actorProfiles
function. You can also create these structures manually. This table shows the valid structure fields.

Field Description Value
ActorID Unique identifier for the actor.

In a scene with multiple actors,
this value distinguishes different
actors from one another.

Positive integer

ClassID User-defined classification ID
for the actor.

ClassID Class Name
1 Car
2 Truck
3 Bicycle
4 Pedestrian
5 Jersey Barrier
6 Guardrail

Positive scalar

Length Length of the actor in meters. Positive scalar
Width Width of the actor in meters. Positive scalar
Height Height of the actor in meters. Positive scalar

2 Objects

2-110

Field Description Value
OriginOffset Offset of the rotational center of

the actor from its geometric
center. The rotational center, or
origin, is located at the bottom
center of the actor. For vehicles,
the rotational center is the point
on the ground beneath the
center of the rear axle.

A three-element vector of the
form [x y z]. Units are in
meters.

MeshVertices Vertices of the actor in mesh
representation.

N-by-3 numeric matrix, where
each row defines a vertex in 3-D
space.

MeshFaces Face of the actor in mesh
representation.

M-by-3 integer matrix, where
each row represents a triangle
defined by vertex IDs, which are
the row numbers of
MeshVertices.

MeshTargetReflectances Material reflectance for each
triangular face of the actor.

M-by-1 numeric vector, where M
is the number of triangle faces
of the actor. Each value must be
in the range [0, 1].

For more information about these structure fields, see the actor and vehicle functions.

FogVisibility — Visible distance in fog
1000 (default) | positive scalar

Visible distance in fog, specified as a positive scalar, in meters. This value must not be greater than
1000. A higher value indicates a better visibility and a lower fog impact. The default value of 1000
indicates clear visibility, or no fog.

Note When you specify both the FogVisibility and Rainrate properties, the function simulates
only the foggy weather.

Data Types: single | double

Rainrate — Rate of rainfall
0 (default) | positive scalar

Rate of rainfall, specified as a positive scalar in millimeters per hour. This value must be less than or
equal to 200. Increasing this value increases the impact of the rain on the generated point cloud. The
default value is 0, indicating no rainfall.

Note When you specify both the FogVisibility and Rainrate properties, the function simulates
only the foggy weather.

Data Types: single | double

 lidarSensor

2-111

Usage

Syntax
ptCloud = lidar(tgtPoses,time)
[ptCloud,isValidTime,clusters] = lidar(tgtPoses,time)

Description

ptCloud = lidar(tgtPoses,time) generates a lidar point cloud, ptCloud, using the actor poses
tgtPoses at the specified simulation time time. The function generates data at time intervals
specified by the UpdateRate property of lidarSensor object lidar.

[ptCloud,isValidTime,clusters] = lidar(tgtPoses,time) additionally returns
isValidTime, which indicates whether the simulation time is valid, and clusters, which contain
the classification data of the output point cloud.

Input Arguments

tgtPoses — Actor poses in scene
L- element array of structures

Actor poses in the scene, specified as an L- element array of structures. Each structure corresponds
to an actor. L is the number of actors used.

You can generate this structure using the actorPoses function. You can also create these structures
manually. Each structure has these fields:

Field Description Value
ActorID Unique identifier for the actor. Positive scalar
Position Position of the actor with

respect to the ego vehicle
coordinate system, in meters.

Vector of the form [x y z]

Velocity Velocity (V) of the actor, in
meters per second, along the x-,
y-, and z- directions.

A vector of the form [Vx Vy Vz]

Default: [0 0 0]
Roll Roll angle of the actor in

degrees.
Numeric scalar

Default: 0
Pitch Pitch angle of the actor in

degrees.
Numeric scalar

Default: 0
Yaw Yaw angle of the actor in

degrees.
Numeric scalar

Default: 0
AngularVelocity Angular velocity (ω) of the actor,

in degrees per second, along the
x-, y-, and z- directions.

Vector of the form [ωx ωy ωz]

Default: [0 0 0]

time — Simulation time
positive scalar

2 Objects

2-112

Simulation time, specified as a positive scalar. The lidarSensor object generates new detections at
the interval specified by the UpdateRate property. The value of the UpdateRate property must be
an integer multiple of the simulation time interval. Updates requested from the sensor between
update intervals do not generate a point cloud.
Data Types: single | double

Output Arguments

ptCloud — Point cloud data
pointCloud object

Point cloud data generated from the scene, returned as a pointCloud object.

isValidTime — Valid simulation time
0 | 1

Valid simulation time, returned as a logical 0(false) or 1(true). The value is 0 for updates requested
at times between the update interval specified by the UpdateRate property.

clusters — Classification data of actors
M-by-N-by-2 array | P-by-2 matrix

Classification data of actors in the scene, returned as an M-by-N-by-2 array for an organized point
cloud or a P-by-2 matrix for an unorganized point cloud. The first column contains the ActorIDs and
the second column contains the ClassIDs of the target actors. M, N are the number of rows and
columns in the organized point cloud, and P is the number of points in the unorganized point cloud.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Lidar Point Cloud Data

Load synthetic scene data containing actor profiles and target poses generated using the
drivingScenario (Automated Driving Toolbox) object into the workspace.

sceneData = load("scene_data.mat");
sceneActorProfiles = sceneData.ActorProfiles;
sceneTargetPoses = sceneData.TargetPoses;

Load the target material reflectance data.

 lidarSensor

2-113

reflectanceData = load("scene_target_reflectances.mat");
targetReflectance = reflectanceData.TargetReflectances;

Define the reflectances for each actor.

for i = 1:numel(sceneActorProfiles)
 sceneActorProfiles(i).MeshTargetReflectances = targetReflectance{i};
end

Create a lidarSensor System object, and define the actor profiles for the object.

lidarS = lidarSensor(AzimuthResolution=0.5,RainRate=2.5);
lidarS.ActorProfiles = sceneActorProfiles;

Create a pcplayer object to visualize the lidar sensor point cloud detections.

player = pcplayer([-100 100],[-20 20],[0 5]);

Generate and visualize the point cloud detections at valid simulation times.

 for i = 1:5:numel(sceneTargetPoses)
 if(~player.isOpen)
 break
 end
 [ptCloud,isValid] = lidarS(sceneTargetPoses{i},i*0.1);
 if(isValid)
 view(player,ptCloud)
 end
 end

2 Objects

2-114

Version History
Introduced in R2022a

R2023a: Simulate weather conditions such as rain and fog

You can now simulate the effects of weather conditions on the point cloud data by using the
FogVisibility and Rainrate properties.

See Also
Apps
Lidar Labeler | Lidar Viewer | Lidar Camera Calibrator | Driving Scenario Designer

Functions
rangeSensor | drivingScenario | actorProfiles | actorPoses

Blocks
Lidar Sensor | Scenario Reader | Point Cloud Viewer

 lidarSensor

2-115

Topics
“Coordinate Systems in Lidar Toolbox”
“Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors”

2 Objects

2-116

LOAMPoints
Object for storing LOAM feature points

Description
The LOAMPoints object enables you to store lidar odometry and mapping (LOAM) feature points for
registration. Use the detectLOAMFeatures function to detect feature points and store them in a
LOAMPoints object. Use the pcregisterloam function to find the transformation between two
LOAMPoints objects.

Creation

Syntax
points = LOAMPoints(location,label,laserID)

Description

points = LOAMPoints(location,label,laserID) constructs a LOAMPoints object from the
specified 3-D point coordinates location. Specify the categorical label label for each point, and an
identifier laserID for each point that relates to the laser that detected the point.

Input Arguments

location — Point locations
M-by-3 matrix of [x y z] coordinates

Point locations, specified by an M-by-3 matrix of [x y z] coordinates, where M is the number of points.

label — Categorical label of each point
M-element categorical array

Categorical label of each point, specified as an M-element categorical array, where M is the number
of points. Each point can be of category 'sharp-edge', 'less-sharp-edge', 'planar-
surface', or 'less-planar-surface'.

laserID — Laser identifier
M-element vector of positive integers

Laser identifier, specified as an M-element vector of positive integers, where M is the number of
points. Each element is the ID of the laser that detected the corresponding point.

Properties
Location — LOAM point locations
M-by-3 matrix of [x y z] coordinates

This property is read-only.

 LOAMPoints

2-117

Point locations, specified by an M-by-3 matrix of [x y z] coordinates, where M is the number of points.

Label — Categorical label of each point
M-element categorical array

This property is read-only.

Categorical label of each point, specified as an M-element categorical array, where M is the number
of points. Each point can be of category 'sharp-edge', 'less-sharp-edge', 'planar-
surface', or 'less-planar-surface'.

Count — Number of points
positive integer

This property is read-only.

Number of points, specified as a positive integer.

Object Functions
downsampleLessPlanar Downsample less planar surface points
transformPointsForward Apply forward geometric transformation to points
show Visualize LOAM feature points

Examples

Detect and Visualize LOAM Feature Points

Load an organized lidar point cloud from a MAT file into the workspace.

ld = load("drivingLidarPoints.mat");
ptCloudOrg = ld.ptCloud;

Detect lidar odometry and mapping (LOAM) feature points.

points = detectLOAMFeatures(ptCloudOrg);

Visualize the LOAM points.

figure
show(points)

2 Objects

2-118

Version History
Introduced in R2022a

References
[1] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:

Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/
10.15607/RSS.2014.X.007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Limitations:

The show function of this object does not support code generation.

See Also
Objects
pointCloud | rigidtform3d

 LOAMPoints

2-119

Functions
detectLOAMFeatures | pcregisterloam

2 Objects

2-120

downsampleLessPlanar
Downsample less planar surface points

Syntax
pointsOut = downsampleLessPlanar(pointsIn,gridStep)

Description
pointsOut = downsampleLessPlanar(pointsIn,gridStep) downsamples the less planar
surface points pointsIn using a box grid filter with 3-D boxes of the specified size gridStep. The
function merges input points within the same box to a single point in the output.

To speed up LOAM registration, downsample the less planar surface points using the
downsampleLessPlanar function, then register the LOAM points using the pcregisterloam
function.

Examples

Downsample Less Planar Surface Points

Load an organized lidar point cloud into the MATLAB® workspace from a MAT file.

ld = load("drivingLidarPoints.mat");
ptCloud = ld.ptCloud;

Detect LOAM feature points in the point cloud.

points = detectLOAMFeatures(ptCloud);

Downsample the less planar surface points.

gridStep = 0.5;
pointsOut = downsampleLessPlanar(points,gridStep);

Visualize the downsampled LOAM points.

figure
show(pointsOut)

 downsampleLessPlanar

2-121

Input Arguments
pointsIn — Input points
LOAMPoints object

Input points, specified as a LOAMPoints object.

gridStep — Size of 3-D box for downsampling less planar surface points
positive scalar

Size of the 3-D box for downsampling less planar surface points, specified as a positive scalar.

Output Arguments
pointsOut — Downsampled points
LOAMPoints object

Downsampled points, returned as a LOAMPoints object.

Version History
Introduced in R2022a

2 Objects

2-122

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectLOAMFeatures | pcregisterloam | pcdownsample

Objects
LOAMPoints

 downsampleLessPlanar

2-123

transformPointsForward
Apply forward geometric transformation to points

Syntax
pointsOut = transformPointsForward(pointsIn,tform)

Description
pointsOut = transformPointsForward(pointsIn,tform) applies the forward geometric
transformation tform to the input pointsIn and returns the transformed LOAM feature points.

Examples

Transform LOAM Feature Points

Load an organized lidar point cloud from a MAT file.

ld = load("drivingLidarPoints.mat");
ptCloud = ld.ptCloud;

Detect LOAM feature points.

points = detectLOAMFeatures(ptCloud);

Define a rigid transformation object.

tform = rigidtform3d([0 0 0],[2 1 4]);

Transform the LOAM feature points.

tformedPoints = transformPointsForward(points,tform);

Visualize the transformed LOAM points.

figure
show(tformedPoints)

2 Objects

2-124

Input Arguments
pointsIn — Input points
LOAMPoints object

Input points, specified as a LOAMPoints object.

tform — Rigid 3-D transformation
rigidtform3d object

Rigid 3-D transformation, specified as a rigidtform3d object.

Output Arguments
pointsOut — Transformed points
LOAMPoints object

Transformed points, returned as a LOAMPoints object.

Version History
Introduced in R2022a

 transformPointsForward

2-125

R2022b: Supports rigidtform3d objects

You can now specify tform, as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectLOAMFeatures | pcregisterloam

Objects
LOAMPoints | rigidtform3d

2 Objects

2-126

show
Visualize LOAM feature points

Syntax
show(points)
show(points,Name=Value)
ax = show(___)

Description
show(points) displays the specified lidar odometry and mapping (LOAM) feature points. Surface
points are displayed in magenta and edge points are displayed in green.

show(points,Name=Value) specifies additional options using one or more name-value argument.
For example, MarkerSize=5 sets the approximate diameter for the marker, in points, to 5.
Unspecified arguments have default values.

ax = show(___) returns the plot axes using any combination of input arguments from previous
syntaxes.

Examples

Detect and Visualize LOAM Feature Points

Load an organized lidar point cloud from a MAT file into the workspace.

ld = load("drivingLidarPoints.mat");
ptCloudOrg = ld.ptCloud;

Detect lidar odometry and mapping (LOAM) feature points.

points = detectLOAMFeatures(ptCloudOrg);

Visualize the LOAM points.

figure
show(points)

 show

2-127

Input Arguments
points — Input points
LOAMPoints object

Input points, specified as a LOAMPoints object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: show(points,MarkerSize=5) sets the approximate diameter for the marker, in points, to
5.

Parent — Axes on which to display visualization
Axes graphics object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave Parent unspecified.

MarkerSize — Diameter of marker
6 (default) | positive scalar

2 Objects

2-128

Diameter of the marker, specified as a positive scalar. The value specifies the approximate diameter of
the point marker in points, defined by MATLAB graphics. A marker size greater than 6 can reduce
rendering performance.

Output Arguments
ax — Plot axes
Axes graphics object

Plot axes, returned as an axes graphics object. You can set the default center of rotation for the point
cloud viewer to the axes center a point in a plot. Set the default behavior using the “Computer Vision
Toolbox Preferences”.

Version History
Introduced in R2022a

See Also
Functions
detectLOAMFeatures | pcregisterloam | pcshowpair

Objects
LOAMPoints

 show

2-129

eigenFeature
Object for storing eigenvalue-based features

Description
The eigenFeature object stores an eigenvalue-based feature vector extracted from point cloud
data.

Creation
Syntax
features = eigenFeature(featureVector,centroid)

Description

features = eigenFeature(featureVector,centroid) constructs an eigenFeature object
from the feature vector featureVector and the centroid centroid. The featureVector
argument sets the Feature property, and the centroid argument sets the Centroid property.

Properties
Feature — Feature vector
seven-element vector

Feature vector, specified as a seven-element vector of the form [linearity planarity
scattering,omnivariance anisotropy eigenentropy change in curvature].

Centroid — Centroid
three-element vector

Centroid, specified as a three-element vector in the form [x y z].

Examples

Create eigenFeature Object

Create a feature vector and set the centroid for the eigenFeature object.

featureVector = rand(1,7);
centroid = rand(1,3);

Create an eigenFeature object.

eFeature = eigenFeature(featureVector,centroid)

eFeature =
 eigenFeature with properties:

2 Objects

2-130

 Feature: [0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785]
 Centroid: [0.5469 0.9575 0.9649]

Version History
Introduced in R2021a

See Also
Functions
extractEigenFeatures

Objects
pcmapsegmatch | pointCloud

Topics
“Build Map and Localize Using Segment Matching”
“Implement Point Cloud SLAM in MATLAB”

 eigenFeature

2-131

pcmapsegmatch
Map of segments and features for localization and loop closure detection

Description
The pcmapsegmatch object creates a map of segments and features, and uses the segment matching
(SegMatch [1]) algorithm for place recognition. This segment matching approach is robust to
dynamic obstacles and reliable on large scale environments. The object stores the features, and
segments, and their corresponding view IDs. Use the view IDs to link the features to a view in the
point cloud view set object, pcviewset, for map building. pcmapsegmatch implements feature
matching using eigenvalue-based features. It uses the Euclidean distance between segment features
to find segment matches.

Creation

Syntax
sMap = pcmapsegmatch
sMap = pcmapsegmatch('CentroidDistance',dist)

Description

sMap = pcmapsegmatch returns a default pcmapsegmatch object. Use the addView object
function to add views and their corresponding segments and features to the map.

sMap = pcmapsegmatch('CentroidDistance',dist) additionally specifies the minimum
distance between segment centroids when adding segments and their corresponding features to the
map. Segments with centroids closer than the specified distance dist, are not added to the map.
dist is specified as a positive scalar with a default value of 0.1.

Properties
ViewIds — View identifier
M-element vector

This property is read-only.

View identifier, specified as an M-element vector of integers, where M is the number of views added
to pcmapsegmatch.

Features — Feature vector
N-element vector of eigenFeature objects

This property is read-only.

Feature vector, specified as an N-element vector of eigenFeature objects, where N is the number of
features.

2 Objects

2-132

Use the addView object function to add features for unique segments to the map. When you update
the map using the updateMap object function, features that correspond to duplicate segments are
removed from the map if they are within the CentroidDistance.

Segments — Point cloud segments
N-element vector of pointCloud objects

This property is read-only.

Point cloud segments, specified as an N-element vector of pointCloud objects, where N is the
number of point cloud segments.

A segment is a group of 3-D points that are close together and represent a partial or full object.

SelectedSubmap — Currently selected submap
entire map (default) | 6-element vector

This property is read-only.

Currently selected submap, specified as a 6-element vector of the form [xmin,xmax ymin ymax zmin
zmax] that describes the range of the submap along each axis. The elements of the vector describe
the region of interest represented by the submap.

XLimits — Range of map along x-axis
2-element vector

This property is read-only.

Range of the map along the x-axis, specified as a 2-element vector of the form [xmin xmax] .

YLimits — Range of map along the Y-axis
2-element vector

This property is read-only.

Range of the map along the Y-axis, specified as a 2-element vector of the form [ymin ymax] .

ZLimits — Range of map along the z-axis
2-element vector

This property is read-only.

Range of the map along the z-axis, specified as a 2-element vector of the form [zmin zmax] .

CentroidDistance — Minimum distance between segment centroids
positive scalar

This property is read-only.

Minimum distance between segment centroids, specified as a positive scalar. The object uses the
minimum distance when adding segments and corresponding features to the map as unique segments
and features.

 pcmapsegmatch

2-133

Object Functions
addView Add view to map
deleteView Delete view from map
findView Retrieve feature and segment indices corresponding to map view
hasView Check if view is in the map
deleteSegments Delete all segments in map
findPose Find absolute pose in map that aligns segment matches
updateMap Update centroid and point cloud segment locations in map
selectSubmap Select submap within map
isInsideSubmap Check if query position is inside selected submap
show Visualize the point cloud segments in the map

Examples

Lidar Localization Using Segment Matching

Load a map of segments and features from a MAT file into the workspace. The point cloud data in the
map has been collected using the Simulation 3D Lidar (UAV Toolbox) block.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Load point cloud scans from a MAT file.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Display the map of segments.

ax = show(sMap);

Change the viewing angle to top-view.

view(2)
pause(0.2)

Set the radius for selecting a cylindrical neighborhood.

outerCylinderRadius = 20;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Set the size and submap threshold parameters for the selected submap

sz = [65 30 20];
submapThreshold = 10;

Set the radius parameter for visualization.

radius = 0.5;

Segment each point cloud and localize by finding segment matches.

2 Objects

2-134

for n = 1:numel(ptCloudScans)
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select the cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.
 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Localize by finding the absolute pose in the map that aligns the segment matches.
 [absPoseMap,~,inlierFeatures,inlierSegments] = findPose(sMap,features,segments);

 if isempty(absPoseMap)
 continue;
 end

 % Display the position estimate in the map.
 poseTranslation = absPoseMap.Translation;
 pos = [poseTranslation(1:2) radius];
 showShape('circle',pos,'Color','r','Parent',ax);
 pause(0.2)

 % Determine if the selected submap needs to be updated.
 [isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
 needSelectSubmap = ~isInside ... % Current pose is outside submap
 || any(distToEdge(1:2) < submapThreshold) ... % Current pose is close to submap edge
 || n == 1; % 1st time localizing using whole map

 % Select a new submap.
 if needSelectSubmap
 sMap = selectSubmap(sMap,poseTranslation,sz);
 end
 end

 pcmapsegmatch

2-135

% Visualize the last segment matches.
figure;
pcshowMatchedFeatures(inlierSegments(:,1),inlierSegments(:,2),inlierFeatures(:,1),inlierFeatures(:,2))

2 Objects

2-136

Version History
Introduced in R2021a

References
[1] Dube, Renaud, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar Cadena.

“SegMatch: Segment Based Place Recognition in 3D Point Clouds.” In 2017 IEEE
International Conference on Robotics and Automation (ICRA), 5266–72. Singapore,
Singapore: IEEE, 2017. https://doi.org/10.1109/ICRA.2017.7989618.

See Also
Functions
segmentLidarData | segmentGroundFromLidarData | pcsegdist | pcshowMatchedFeatures |
extractEigenFeatures

Objects
pcmapndt | pcviewset

Topics
“Build Map and Localize Using Segment Matching”

 pcmapsegmatch

2-137

addView
Add view to map

Syntax
sMapOut = addView(sMapIn,viewId,features)
sMapOut = addView(sMapIn,viewId,features,segments)

Description
sMapOut = addView(sMapIn,viewId,features) adds a view, viewId, that contains the
specified features features to the map sMapIn.

sMapOut = addView(sMapIn,viewId,features,segments) adds the segments segments that
correspond to each feature.

Examples

Add Features and Segments to a Map

Create a map representation to hold point cloud segments and features.

sMap = pcmapsegmatch('CentroidDistance',1);

Load point cloud scans.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Set the radius to select a cylindrical neighborhood.

outerCylinderRadius = 30;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Segment each point cloud and add the features and point cloud segments to the map.

for n = 1:numel(ptCloudScans);
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius ...

2 Objects

2-138

 & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 [labels, numClusters] = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.
 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Add the features and segments to the map.
 sMap = addView(sMap,n,features,segments);
end

Display the map of segments.

figure; show(sMap);

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

viewId — View identifier
positive integer

View identifier, specified as an integer. Each view identifiers is unique to a specific view.

features — Eigenvalue-based features
vector of eigenFeature objects

 addView

2-139

Eigenvalue-based features, specified as a vector of eigenFeature objects. The function filters out
features that already exist in the map are filtered out as duplicates based on their centroid location
and the distance specified by the CentroidDistance property of the map.

You should extract new features from only a point cloud registered to the point clouds of existing
features

segments — Point cloud segments
vector of pointCloud objects

Point cloud segments, specified as a vector of pointCloud objects. To use the show object function
for visualization, you must specify this argument.

For improved performance, do not include segments in the map with findPose and updateMap
object functions. Alternatively, you can use the deleteSegment object function to remove the
existing segments before using findPose or updateMap.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object.

Version History
Introduced in R2021a

See Also
Functions
findPose | findView

Objects
pcmapsegmatch | eigenFeature

2 Objects

2-140

deleteSegments
Delete all segments in map

Syntax
sMapOut = deleteSegments(sMapIn)

Description
sMapOut = deleteSegments(sMapIn) deletes all segments in the map sMapIn. Removing the
segments from the map improves the performance of the findPose and updateMap object functions.

Examples

Delete Segments Segment Map

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Remove the segments from the map, leaving only the corresponding features in the map.

sMapNoSegments = deleteSegments(sMap);

Verify the number of segments in the map before and after removal.

numBefore = numel(sMap.Segments);
numAfter = numel(sMapNoSegments.Segments);
disp("Number of Segments Before Deleting Segments: " + num2str(numBefore))

Number of Segments Before Deleting Segments: 464

disp("Number of Segments After Deleting Segments: " + num2str(numAfter))

Number of Segments After Deleting Segments: 0

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

 deleteSegments

2-141

Updated map of segments and features, returned as a pcmapsegmatch object.

Version History
Introduced in R2021a

See Also
Objects
pcmapsegmatch

Functions
findPose | updateMap

2 Objects

2-142

deleteView
Delete view from map

Syntax
sMapOut = deleteView(sMapIn,viewIds)

Description
sMapOut = deleteView(sMapIn,viewIds) deletes the specified views viewIds, along with their
corresponding features and segments.

Examples

Delete Views from Map

Load a map of segments and features from a MAT file into the workspace.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Visualize the map.

figure
show(sMap)
title('Map Before Deleting Views')

 deleteView

2-143

Delete the first 50 views from the map.

viewIds = 1:50;
sMap = deleteView(sMap,viewIds);

Visualize the map after deleting the views.

figure
show(sMap)
title('Map After Deleting the First 50 Views')

2 Objects

2-144

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector. M is the number of views to delete. Each view
identifier is unique to a specific view.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object.

Version History
Introduced in R2021a

 deleteView

2-145

See Also
Functions
deleteSegments | addView

Objects
pcmapsegmatch

2 Objects

2-146

findPose
Find absolute pose in map that aligns segment matches

Syntax
absPoseMap = findPose(sMap,refPose)
[absPoseMap,matchViewId] = findPose(sMap,refPose)

absPoseMap = findPose(sMap,currentFeatures)
absPoseMap = findPose(sMap,currentFeatures,currentSegments)

[___ ,inlierFeatures,inlierSegments] = findPose(___)

[___] = findPose(___ ,Name,Value)

Description
Map Building

absPoseMap = findPose(sMap,refPose) finds the absolute pose of the last added view that
aligns the segment matches of the detected loop closure. The function looks for segment matches
between the last added view and the segment features inside the submap specified by the
SelectedSubmap property of sMap.

[absPoseMap,matchViewId] = findPose(sMap,refPose) returns the view identifier for the
view that contains the most inliers. Use matchViewId to add the loop closure as a connection in a
pcviewset, using the addConnection object function. Correct for accumulated drift using
optimizePoses.
Localization

absPoseMap = findPose(sMap,currentFeatures) finds the absolute pose that aligns the
segments that correspond to the current features currentFeatures to the segments in the submap
specified by the SelectedSubmap property of sMap.

absPoseMap = findPose(sMap,currentFeatures,currentSegments) specifies the segments
currentSegments that correspond to the current features currentFeatures.
Visualization

[___ ,inlierFeatures,inlierSegments] = findPose(___) returns the inlier features
inlierFeatures and inlier segments inlierSegments in addition to any combination of
arguments from previous syntaxes.
Optional Name-Value Arguments

[___] = findPose(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntaxes. For example,
'MaxThreshold',1.5 sets the matching threshold to 1.5 percent.

Examples

 findPose

2-147

Lidar Localization Using Segment Matching

Load a map of segments and features from a MAT file into the workspace. The point cloud data in the
map has been collected using the Simulation 3D Lidar (UAV Toolbox) block.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Load point cloud scans from a MAT file.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Display the map of segments.

ax = show(sMap);

Change the viewing angle to top-view.

view(2)
pause(0.2)

Set the radius for selecting a cylindrical neighborhood.

outerCylinderRadius = 20;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Set the size and submap threshold parameters for the selected submap

sz = [65 30 20];
submapThreshold = 10;

Set the radius parameter for visualization.

radius = 0.5;

Segment each point cloud and localize by finding segment matches.

for n = 1:numel(ptCloudScans)
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select the cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.

2 Objects

2-148

 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Localize by finding the absolute pose in the map that aligns the segment matches.
 [absPoseMap,~,inlierFeatures,inlierSegments] = findPose(sMap,features,segments);

 if isempty(absPoseMap)
 continue;
 end

 % Display the position estimate in the map.
 poseTranslation = absPoseMap.Translation;
 pos = [poseTranslation(1:2) radius];
 showShape('circle',pos,'Color','r','Parent',ax);
 pause(0.2)

 % Determine if the selected submap needs to be updated.
 [isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
 needSelectSubmap = ~isInside ... % Current pose is outside submap
 || any(distToEdge(1:2) < submapThreshold) ... % Current pose is close to submap edge
 || n == 1; % 1st time localizing using whole map

 % Select a new submap.
 if needSelectSubmap
 sMap = selectSubmap(sMap,poseTranslation,sz);
 end
 end

 findPose

2-149

% Visualize the last segment matches.
figure;
pcshowMatchedFeatures(inlierSegments(:,1),inlierSegments(:,2),inlierFeatures(:,1),inlierFeatures(:,2))

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

refPose — Reference pose of last added view
rigidtform3d object

Reference pose of the last added view, specified as a rigidtform3d object. The reference pose is the
estimated absolute pose used to transform the point cloud from the sensor frame to the world frame
for feature extraction.

currentFeatures — Current features
M-element vector of eigenFeature objects

Current features, specified as an M-element vector of eigenFeature objects.

currentSegments — Current segments
M-element vector of pointCloud objects

2 Objects

2-150

Current segments, specified as an M-element vector of pointCloud objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: MatchThreshold=1.5 sets the matching threshold to 1.5 percent.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MatchThreshold',1.5 sets the matching threshold to 1.5 percent.

MatchThreshold — Matching threshold
1.5 (default) | scalar in range (0, 100]

Matching threshold, specified as a scalar in the range (0, 100]. The threshold is the maximum
percentage of the distance from a perfect match. The function classifies segments are classified as
possible matches if the distance between their feature vectors is lower than the threshold.

MinNumInliers — Minimum number of inliers
4 (default) | scalar

Minimum number of inliers, specified as a scalar greater than or equal to 3. Decreasing this value can
result in false positives. If the number of detected inliers is less than 'MinNumInliers', the function
returns an empty output for absPoseMap .

NumExcludedViews — Number of most recently added views to exclude
auto (default) | integer

Number of most recently added views to exclude, specified as an integer. For loop closure detection,
exclude the most recently added views to avoid matches against the most recent features. Specify a
larger value for this argument if many consecutive views correspond to the same area, such as scans
from a slow-moving vehicle.

The function uses a default value of 10 for map building and 0 for localization.

MaxDistance — Maximum distance for inlier centroid match
1 (default) | positive numeric scalar

Maximum distance for inlier centroid match, specified as a positive numeric scalar. This value is the
maximum distance that a centroid can differ from the projected location of its centroid match to be
considered an inlier in the geometric verification step.

NumNearestNeighbor — Number of closest features selected as feature match candidates
100 (default) | positive integer

Number of closest features selected as feature match candidates, specified as a positive integer. For
each feature in the last added view, or in the current features currentFeatures, the function
selects the closest 'NumNearestNeighbor' features as candidate feature matches. Specify a larger
value for this argument for maps with numerous similar features.

NumSelectedClusters — Number of feature clusters to check for matches
Inf (default) | positive integer

 findPose

2-151

Number of feature clusters to check for matches, specified as a positive integer. The function clusters
candidate features based on their centroid locations. If you specify refPose, then the findPose
function selects the clusters closest to the centroids of the last added view currentFeatures.
Decrease this value to improve performance at the expense of increasing the likelihood of false
negatives.

Output Arguments
absPoseMap — Absolute pose in the map
rigidtform3d object

Absolute pose in the map, returned as a rigidtform3d object. This object specifies the absolute
pose that aligns the segment matches.

matchViewId — View identifier containing most inlier matches
integer

View identifier containing the most inlier matches, returned as an integer. The inliers used to
compute the absolute pose map can come from several views.

inlierFeatures — Inlier features
N-by-2 matrix of eigenFeature objects

Inlier features, returned as an N-by-2 matrix of eigenFeature objects. The first column corresponds
to the inliers in the map, and the second column corresponds to the inliers in the last added view or
the current features input.

inlierSegments — Inlier segments
N-by-2 matrix of pointCloud objects

Inlier segments, returned as an N-by-2 matrix of pointCloud objects. The first column corresponds
to the inliers in the map, and the second column corresponds to the inliers in the last added view or
the current segments input.

Tips
• Removing the segments from the map using deleteSegments, before using the findPose

function, can improve performance.

Algorithms
findPose finds the absolute pose of a segmented point cloud using the SegMatch [1 on page 2-153]
algorithm for place recognition. It uses the Euclidean distance between segment features to find
segment matches. The function finds the matches between the segments of interest and the segments
in the map, and returns the absolute pose that aligns the segment matches in the map.

• Map Building: Loop Closure Detection — Loop closure starts with finding the absolute pose by
finding the segment matches between the last added view and the segment features in the
selected submap, which is specified by the SelectedSubmap property of the map.

The last added view corresponds to a loop closure when the findPose function can estimate a
valid geometric transformation. If the function cannot estimate this transformation, then the
function returns an empty value for absPoseMap.

2 Objects

2-152

• Map Building: Correct Drift — To correct for drift, add the view that contains the most inliers
for loop closure as a connection to the point cloud view set pcviewset object as a connection
using the addConnection object function. Use the optimizePoses function to correct for
accumulated drift.

• Localization — To find the absolute pose of the point cloud in the map, the function looks for
segment matches between the current features currentFeatures and the submap specified by
the SelectedSubmap property of sMap. If it cannot estimate a valid geometric transformation
cannot be estimated, the function returns an empty value for the absPoseMap output argument.

• Visualization — Use the inlierFeatures and inlierSegments output arguments with the
pcshowMatchedFeatures function to visualize the segment matches between the features and
segments included in the map.

Version History
Introduced in R2021a

R2022b: Supports rigidtform3d objects
Behavior changed in R2022b

You can now specify refPose as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify refPose as a rigid3d object, this object is not recommended because
it uses the postmultiply convention. For more information, see “Migrate Geometric Transformations
to Premultiply Convention”.

When you use a syntax that includes the refPose argument, the findPose function returns
absPoseMap as an object of the same type. When you use a syntax that includes the
currentFeatures argument,the findPose function now returns absPoseMap as a rigidtform3d
object. Before, the function returned absPoseMap as a rigid3d object.

References
[1] Dube, Renaud, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar Cadena.

“SegMatch: Segment Based Place Recognition in 3D Point Clouds.” In 2017 IEEE
International Conference on Robotics and Automation (ICRA), 5266–72. Singapore,
Singapore: IEEE, 2017. https://doi.org/10.1109/ICRA.2017.7989618.

See Also
Objects
pcmapsegmatch | rigidtform3d | pcviewset | pointCloud | eigenFeature

Functions
updateMap | estgeotform3d | extractEigenFeatures | pcshowMatchedFeatures |
segmentLidarData | pcsegdist

Topics
“Build Map and Localize Using Segment Matching”

 findPose

2-153

findView
Retrieve feature and segment indices corresponding to map view

Syntax
idx = findView(sMap,viewIds)

Description
idx = findView(sMap,viewIds) retrieves the indices of the features and segments that
correspond to the specified views viewIds.

Examples

Select Segments from Specific Views

Load a map of segments and features into the workspace.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Retrieve the feature and segment indices corresponding to specific views.

viewIds = 20:25;
idx = findView(sMap,viewIds);

Select the segments that correspond to these views.

segments = sMap.Segments(idx);

Visualize the segments.

ptCloud = pccat(segments);
figure
pcshow(ptCloud)

2 Objects

2-154

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector. M is the number of views to delete. Each view
identifier is unique to a specific view.

Output Arguments
idx — Indices of features and segments in specified views
N-element vector

Indices of the index to features and segments in the specified views, returned as an N-element vector.
N is the total number of features and segments in the map. If an element of idx is 1 (true), then the
corresponding feature belongs to a specified view.

 findView

2-155

Version History
Introduced in R2021a

See Also
Functions
addView | hasView

Objects
pcmapsegmatch

2 Objects

2-156

hasView
Check if view is in the map

Syntax
tf = hasView(sMap,viewIds)

Description
tf = hasView(sMap,viewIds) checks if the views specified by viewIds are in the map.

Examples

Check if Views Exist

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Specify a set of indices for views.

viewIds = [10,500,2,100];

Check if the specified indices correspond to existing view identifiers.

tf = hasView(sMap,viewIds)

tf = 1x4 logical array

 1 0 1 0

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector of integers. M is the number of views to delete.
Each view identifier is unique to a specific view.

 hasView

2-157

Output Arguments
tf — Views that exist in map
M-element vector

Views that exist in map, returned as an M-element vector. The function returns a value of 1 (true) if
the view specified in the corresponding element of view Ids is in the map. The function returns 0
(false) if the view is not in the map.

Version History
Introduced in R2021a

See Also
Objects
pcmapsegmatch

Functions
deleteView

2 Objects

2-158

isInsideSubmap
Check if query position is inside selected submap

Syntax
isInside = isInsideSubmap(sMap,pos)
[isInside,distToEdge] = isInsideSubmap(sMap,pos)

Description
isInside = isInsideSubmap(sMap,pos) check if the query position pos, is inside the selected
submap of the map sMap.

[isInside,distToEdge] = isInsideSubmap(sMap,pos) also returns the distance from the
query position to the closest edge of the submap along the X-,Y-, and Z-axes respectively.

Examples

Check If Positions Are in Selected Submap

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Select a submap within the map.

center = [0 30 0];
sz = [40 24 10];
sMap = selectSubmap(sMap,center,sz);

Check three positions to see if they are inside the submap.

pos1 = [0 30 0]; % center
[isInside1,distToEdge1] = isInsideSubmap(sMap,pos1)

isInside1 = logical
 1

distToEdge1 = 1x3 single row vector

 20.0000 12.0000 0.0649

pos2 = [60 0 0]; % completely outside
[isInside2,distToEdge2] = isInsideSubmap(sMap,pos2)

isInside2 = logical
 0

 isInsideSubmap

2-159

distToEdge2 = 1x3 single row vector

 40.0000 18.0000 0.0649

pos3 = [15 30 0]; % inside, 5 meters from edge in x direction
[isInside3,distToEdge3] = isInsideSubmap(sMap,pos3)

isInside3 = logical
 1

distToEdge3 = 1x3 single row vector

 5.0000 12.0000 0.0649

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

pos — Query position
3-element vector

Query position, specified as a 3-element vector of the form [x y z].

Output Arguments
isInside — Indication of position inside submap
true | false

Indication of position inside submap, returned as a logical true or false.

distToEdge — Distance from the query position to closest edge of the submap
3-element vector

Distance from the query position to the closest edge of the submap in the X-, Y-, and Z-axes
respectively, returned as a 3-element vector.

Version History
Introduced in R2021a

See Also
Objects
pcmapsegmatch

2 Objects

2-160

Functions
selectSubmap | findPose

 isInsideSubmap

2-161

selectSubmap
Select submap within map

Syntax
sMapOut = selectSubmap(sMapIn,roi)
sMapOut = selectSubmap(sMapIn,center,sz)

Description
sMapOut = selectSubmap(sMapIn,roi) selects a submap within the sMapIn using the specified
region of interest roi.

Use this function to confine the search space for localization using coarse position estimates.

sMapOut = selectSubmap(sMapIn,center,sz) selects the submap specified by the center and
size sz of the submap.

Examples

Select and Visualize Submap

Load a segment map from a MAT file into the workspace.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Visualize the currently selected submap.

figure
show(sMap,'submap')
title('Initial Selected Submap')

2 Objects

2-162

Select a new submap within the map.

center = [0 30 0];
sz = [40 25 10];
sMap = selectSubmap(sMap,center,sz);

Visualize the selected submap.

figure
show(sMap,'submap')
title('New Selected Submap')

 selectSubmap

2-163

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

roi — Region of interest
6-element vector

Region of interest, specified as a 6-element vector of the form [xmin xmax ymin ymax zmin zmax] .

center — Center of submap
3-element vector

Center of the submap, specified as 3-element vector of the form [xc yc zc].

sz — Size of submap along each axis
3-element vector

Size of the submap along each axis, specified as 3-element vector of the form [xsz ysz zsz].

2 Objects

2-164

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object with the updated
SelectedSubmap property.

Tips
• Use a submap size large enough to include the uncertainty of the position estimates and the range

of the sensor used withe findPose.A larger submap can increase computation time during each
call to the findPose function, but it can reduce the frequency of submap updates.

Version History
Introduced in R2021a

See Also
Objects
pcmapsegmatch

Functions
isInsideSubmap | findPose

 selectSubmap

2-165

show
Visualize the point cloud segments in the map

Syntax
show(sMap)
show(sMap,spatialExtent)

show(___ ,Name,Value)

ax = show(___)

Description
show(sMap) displays the point cloud segments in the map.

show(sMap,spatialExtent) displays point cloud segments within the spatial map or submap
specified by spatialExtent.

show(___ ,Name,Value) specifies options using one or more name-value arguments in addition to
any combination of input arguments in previous syntaxes. For example, 'MarkerSize',6 sets the
marker size to 6 points.

ax = show(___) returns the axes used to plot the point cloud segments specified with previous
syntaxes.

Examples

Visualize Full Map and Selected Submap

Load a map of segments and features from a MAT file into the workspace.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Select a submap within the map.

center = [0 30 0];
sz = [40 25 8];
sMap = selectSubmap(sMap,center,sz);

Visualize the full map.

figure
show(sMap)
title('Full Map')

Highlight the selected submap on the full map.

pos = [center sz zeros(1,3)];
showShape('cuboid',pos,'Color','y','Opacity',0.2);

2 Objects

2-166

Visualize the selected submap.

figure
show(sMap,'submap')
title('Selected Submap')

 show

2-167

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

spatialExtent — Spatial extent
'map' | 'submap'

Spatial extent, specified as 'map' or 'submap'. When you specify 'submap', only points within the
current submap are displayed.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerSize',6 sets the marker size to 6 points.

MarkerSize — Diameter of marker
6 (default) | positive scalar

2 Objects

2-168

Diameter of marker, specified as a positive scalar. This value specifies the approximate diameter of
the point marker. Units are in points. A marker size larger than six can reduce rendering
performance.

Parent — Axes on which to display visualization
Axes object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Output Arguments
ax — Plot axes
Axes object

Plot axes, returned as an axes graphics object.

Version History
Introduced in R2021a

See Also
Objects
pcmapsegmatch

Functions
pcshow | pcshowMatchedFeatures

 show

2-169

updateMap
Update centroid and point cloud segment locations in map

Syntax
sMapOut = updateMap(sMapIn,tforms)

Description
sMapOut = updateMap(sMapIn,tforms) updates the centroid and point cloud segment locations
by applying the specified transformation tforms.

Examples

Apply Translation and Rotation To Entire Map

Load a map of segments and features from a MAT file into the workspace.

data = load("segmatchMapFullParkingLot.mat");
sMap = data.segmatchMapFullParkingLot;

Visualize the map.

figure
show(sMap)

Change the viewing angle to top-view.

view(2)
title("Initial Map")

2 Objects

2-170

Define the transformation.

eulerAngles = [0 0 45]; % degrees
trans = [100 200 0];
tform = rigidtform3d(eulerAngles,trans);
numViews = numel(sMap.ViewIds);
tforms = repmat(tform,numViews,1);

Update the segments and features of each view with the defined transformation.

sMap = updateMap(sMap,tforms);

Visualize the transformed map.

figure
show(sMap)

Change the viewing angle to top-view.

view(2)
title("Transformed Map")

 updateMap

2-171

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

tforms — Transformations
M-element vector of rigidtform3d objects

Transformations, specified as an M-element vector of rigidtform3d objects. M is the number of
views in the map.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object. After the function
updates the locations, it removes possible duplicates in the map based on the CentroidDistance
property of the map.

The function resets the selected submap, specified by the SelectedSubmap property of the
pcmapsegmatch object, to the extent of the map based on the centroid locations.

2 Objects

2-172

Tips
• To improve performance, remove all segments from the map using the deleteSegments function.

Version History
Introduced in R2021a

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

See Also
Functions
findPose

Objects
pcmapsegmatch | rigidtform3d

 updateMap

2-173

cuboidModel
Parametric cuboid model

Description
The cuboidModel object stores the parameters of a parametric cuboid model. After you create a
cuboidModel object, you can extract cuboid corner points, and points within the cuboid using the
object functions. Cuboid models are used to store the output of pcfitcuboid function. It is a shape
fitting function which fits a cuboid over a point cloud.

Creation
There are two ways to create a cuboidModel object.

• Create a cuboid model by specifying the cuboid parameters in the cuboidModel function.
• Fit a cuboid model over a point cloud using the pcfitcuboid function.

Description

model = cuboidModel(params) constructs a parametric cuboid model from the 1-by-9 input
vector, params.

model = pcfitcuboid(ptCloudIn) fits a cuboid over the input point cloud data. The
pcfitcuboid function stores the properties of the cuboid in a parametric cuboid model object,
model.

model = pcfitcuboid(ptCloudIn,indices) fits a cuboid over a selected set of points,
indices, in the input point cloud.

Properties
Parameters — Cuboid model parameters
nine-element row vector

This property is read-only.

Cuboid model parameters, stored as a nine-element row vector of the form [xctr yctr zctr xlen ylen zlen xrot
yrot zrot].

• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-, y-, and z-axis, respectively, before

rotation has been applied.
• xrot, yrot, and zrot specify the rotation angles in degrees for the cuboid along the x-, y-, and z-axis,

respectively. These angles are clockwise-positive when looking in the forward direction of their
corresponding axes.

The figure shows how these values determine the position of a cuboid.

2 Objects

2-174

These parameters are specified by the params input argument.
Data Types: single | double

Center — Center of cuboid
three-element row vector

This property is read-only.

Center of the cuboid, stored as a three-element row vector of the form [xctr yctr zctr]. The vector
contains the 3-D coordinates of the cuboid center in the x-, y-, and z-axis, respectively.

This property is derived from the Parameters property.
Data Types: single | double

Dimensions — Dimensions of cuboid
three-element row vector

This property is read-only.

Dimensions of the cuboid, stored as a three-element row vector of the form [xlen ylen zlen]. The vector
contains the length of the cuboid along the x-, y-, and z-axis, respectively.

This property is derived from the Parameters property.
Data Types: single | double

 cuboidModel

2-175

Orientation — Orientation of cuboid
three-element row vector

This property is read-only.

Orientation of the cuboid, stored as a three-element row vector of the form, [xrot yrot zrot], in degrees.
The vector contains the rotation of the cuboid along the x-, y-, and z-axis, respectively.

This property is derived from the Parameters property.

If the orientation is in quaternion, convert the quaternion to Euler angles in degrees to create a
cuboid model.

• To convert a quaternion to Euler angles in radians, use the quat2eul function. Set the sequence
argument of the quat2eul function to "XYZ".

• To convert angle units from radians to degrees, use the rad2deg function.

Data Types: single | double

Object Functions
getCornerPoints Get corner points of cuboid model
findPointsInsideCuboid Find points enclosed by cuboid model
plot Plot cuboid model

Examples

Detect Cuboid in Point Cloud

Detect a cuboid in a point cloud using pcfitcuboid function. The function stores the cuboid
parameters as a cuboidModel object.

Read point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');

Search the point cloud within a specified region of interest (ROI). Create a point cloud of only the
detected points.

roi = [-30 30 -20 30 -8 13];
in = findPointsInROI(ptCloud,roi);
ptCloudIn = select(ptCloud,in);

Plot the point cloud of detected points.

 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detected Points in ROI')

2 Objects

2-176

Find the indices of the points in a specified ROI within the point cloud.

roi = [9.6 13.8 7.9 9.3 -2.5 3];
sampleIndices = findPointsInROI(ptCloudIn,roi);

Fit a cuboid to the selected set of points in the point cloud.

 model = pcfitcuboid(ptCloudIn,sampleIndices);
 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detect a Cuboid in a Point Cloud')

Plot the cuboid box in the point cloud.

hold on
plot(model)

 cuboidModel

2-177

Display the internal properties of the cuboidModel object.

model

model =
 cuboidModel with properties:

 Parameters: [11.4873 8.5997 -1.6138 3.6713 1.3220 1.7576 0 0 0.9999]
 Center: [11.4873 8.5997 -1.6138]
 Dimensions: [3.6713 1.3220 1.7576]
 Orientation: [0 0 0.9999]

Fit Cuboid Over Point Cloud Data

Fit cuboid bounding boxes around clusters in a point cloud.

Load the point cloud data into the workspace.

data = load('drivingLidarPoints.mat');

Define and crop a region of interest (ROI) from the point cloud. Visualize the selected ROI of the point
cloud.

roi = [-40 40 -6 9 -2 1];
in = findPointsInROI(data.ptCloud,roi);

2 Objects

2-178

ptCloudIn = select(data.ptCloud,in);
hcluster = figure;
panel = uipanel('Parent',hcluster,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn,'MarkerSize',30,'Parent',ax)
title('Input Point Cloud')

Segment the ground plane. Visualize the segmented ground plane.

maxDistance = 0.3;
referenceVector = [0 0 1];
[~,inliers,outliers] = pcfitplane(ptCloudIn,maxDistance,referenceVector);
ptCloudWithoutGround = select(ptCloudIn,outliers,'OutputSize','full');
hSegment = figure;
panel = uipanel('Parent',hSegment,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshowpair(ptCloudIn,ptCloudWithoutGround,'Parent',ax)
legend('Ground Region','Non-Ground Region','TextColor', [1 1 1])
title('Segmented Ground Plane')

 cuboidModel

2-179

Segment the non-ground region of the point cloud into clusters. Visualize the segmented point cloud.

distThreshold = 1;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);
labelColorIndex = labels;
hCuboid = figure;
panel = uipanel('Parent',hCuboid,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn.Location,labelColorIndex,'Parent',ax)
title('Fitting Bounding Boxes')
hold on

Fit bounding box on each cluster, visualized as orange highlights.

for i = 1:numClusters
 idx = find(labels == i);
 model = pcfitcuboid(ptCloudWithoutGround,idx);
 plot(model)
end

2 Objects

2-180

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcfitcuboid | getCornerPoints | findPointsInsideCuboid | plot

Objects
pointCloud | planeModel | cylinderModel | sphereModel

 cuboidModel

2-181

findPointsInsideCuboid
Find points enclosed by cuboid model

Syntax
indices = findPointsInsideCuboid(model,ptCloudIn)

Description
indices = findPointsInsideCuboid(model,ptCloudIn) returns the linear indices of the
points enclosed by a cuboid model, model, in an input point cloud, ptCloudIn.

Examples

Extract Points Inside Cuboid Model

Extract points enclosed by a cuboid model in a point cloud. Create the cuboid model as a
cuboidModel object.

Read point cloud data into the workspace.

ptCloudIn = pcread('highwayScene.pcd');

Define a cuboid model as a cuboidModel object.

params = [11.4873085 8.59969 -1.613766 3.6712 1.3220...
 1.75755, 0, 0, 0.017451];
model = cuboidModel(params);

Find the points inside the cuboid.

indices = findPointsInsideCuboid(model,ptCloudIn);

Select the corresponding points in the input point cloud.

cubPtCloud = select(ptCloudIn,indices);

Plot the point cloud and the points enclosed by the cuboid.

pcshowpair(ptCloudIn,cubPtCloud)
xlim([-20 30])
ylim([-20 40])
legend("Input Point Cloud","Enclosed Points",'TextColor',[1 1 1])

2 Objects

2-182

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
indices — Indices of enclosed points
N-element column vector

Indices of enclosed points, returned as an N-element column vector. N is the number of enclosed
points. Use the select function to select the corresponding points in the input point cloud
ptCloudIn.

Version History
Introduced in R2020b

 findPointsInsideCuboid

2-183

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getCornerPoints | plot | pcfitcuboid

Objects
cuboidModel

2 Objects

2-184

getCornerPoints
Get corner points of cuboid model

Syntax
points = getCornerPoints(model)

Description
points = getCornerPoints(model) returns the corner points of a cuboid model as 3-D
coordinates.

Examples

Get Corner Points of Cuboid Model

Create a cuboid model object using the cuboidModel creation function, and get the corner points of
the cuboid model as 3-D coordinates.

Read point cloud data into the workspace.

ptCloudIn = pcread('highwayScene.pcd');

Define a cuboid model as a cuboidModel object.

params = [11.4873085 8.59969 -1.613766 3.6712 1.3220,...
 1.75755 0 0 0.017451];
model = cuboidModel(params);

Get the corner points of the cuboid model.

points = getCornerPoints(model)

points = 8×3

 13.3227 9.2612 -0.7350
 9.6515 9.2601 -0.7350
 9.6519 7.9381 -0.7350
 13.3231 7.9392 -0.7350
 13.3227 9.2612 -2.4925
 9.6515 9.2601 -2.4925
 9.6519 7.9381 -2.4925
 13.3231 7.9392 -2.4925

The columns represent the x, y, and z coordinates, respectively, of the eight corners of the cuboid
model. Each row represents a corner point.

 getCornerPoints

2-185

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

Output Arguments
points — 3-D coordinates of corner points
8-by-3 matrix of real values

3-D coordinates of the corner points, returned as an 8-by-3 matrix of real values.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
findPointsInsideCuboid | plot | pcfitcuboid

Objects
cuboidModel

2 Objects

2-186

plot
Plot cuboid model

Syntax
plot(model)
plot(model,'Parent',ax)
H = plot(___)

Description
plot(model) plots a cuboid model within the axes limits of the current figure.

plot(model,'Parent',ax) plots a cuboid model on a specified output axes.

H = plot(___) additionally returns the cuboid model plot (figure) as a patch object.

Examples

Detect Cuboid in Point Cloud

Detect a cuboid in a point cloud using pcfitcuboid function. The function stores the cuboid
parameters as a cuboidModel object.

Read point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');

Search the point cloud within a specified region of interest (ROI). Create a point cloud of only the
detected points.

roi = [-30 30 -20 30 -8 13];
in = findPointsInROI(ptCloud,roi);
ptCloudIn = select(ptCloud,in);

Plot the point cloud of detected points.

 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detected Points in ROI')

 plot

2-187

Find the indices of the points in a specified ROI within the point cloud.

roi = [9.6 13.8 7.9 9.3 -2.5 3];
sampleIndices = findPointsInROI(ptCloudIn,roi);

Fit a cuboid to the selected set of points in the point cloud.

 model = pcfitcuboid(ptCloudIn,sampleIndices);
 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detect a Cuboid in a Point Cloud')

Plot the cuboid box in the point cloud.

hold on
plot(model)

2 Objects

2-188

Display the internal properties of the cuboidModel object.

model

model =
 cuboidModel with properties:

 Parameters: [11.4873 8.5997 -1.6138 3.6713 1.3220 1.7576 0 0 0.9999]
 Center: [11.4873 8.5997 -1.6138]
 Dimensions: [3.6713 1.3220 1.7576]
 Orientation: [0 0 0.9999]

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

ax — Output axes
gca (default) | Axes object

Output axes, specified as an Axes object, on which to display the cuboid model. For a list of
properties, see Axes Properties.

 plot

2-189

Output Arguments
H — Patch object
patch object

Patch object, returned as a patch object.

Version History
Introduced in R2020b

See Also
Functions
getCornerPoints | findPointsInsideCuboid | pcfitcuboid

Objects
cuboidModel

2 Objects

2-190

groundTruthLidar
Lidar ground truth label data

Description
The groundTruthLidar object contains information about lidar ground truth labels. The data source
used to create the object is a collection of lidar point cloud data. You can create, export, or import a
groundTruthLidar object from the Lidar Labeler app.

Creation
To export a groundTruthLidar object from the Lidar Labeler app, on the app toolstrip, select
Export > To Workspace. The app exports the object to the MATLAB workspace. To create a
groundTruthLidar object programmatically, use the groundTruthLidar function (described
here).

Syntax
gTruth = groundTruthLidar(dataSource,labelDefs,labelData)

Description

gTruth = groundTruthLidar(dataSource,labelDefs,labelData) returns an object
containing lidar ground truth labels that can be imported into the Lidar Labeler app.

• dataSource specifies the source of the lidar point cloud data and sets the DataSource property.
• labelDefs specifies the definitions of region of interest (ROI) and scene labels containing

information such as Name, Type, and Group, and sets the LabelDefinitions property.
• labelData specifies the identifying information, position, and timestamps for the marked ROI

labels and scene labels, and sets the LabelData property.

Properties
DataSource — Source of ground truth lidar data
PointCloudSequenceSource object | VelodyneLidarSource object | LasFileSequenceSource
object | CustomPointCloudSource object | RosbagSource object

Source of ground truth lidar data, specified as a PointCloudSequenceSource,
VelodyneLidarSource, LasFileSequenceSource, CustomPointCloudSource, or
RosbagSource object. This object contains the information that describes the source from which the
ground truth lidar data was labeled. This table provides more details about the type of objects that
you can specify.

 groundTruthLidar

2-191

Object Name Data Source Class Reference
PointCloudSequenceSource Point cloud sequence folder vision.labeler.loading.P

ointCloudSequenceSource
VelodyneLidarSource Velodyne® packet capture

(PCAP) file
vision.labeler.loading.V
elodyneLidarSource

LasFileSequenceSource LAS or LAZ file sequence folder lidar.labeler.loading.La
sFileSequenceSource

CustomPointCloudSource Point cloud data from custom
sources

lidar.labeler.loading.Cu
stomPointCloudSource

RosbagSource Rosbag file lidar.labeler.loading.Ro
sbagSource

LabelDefinitions — Label definitions
table

This property is read-only.

Label definitions, specified as a table. To create this table, use one of these options.

• In the Lidar Labeler app, create label definitions, and then export them as part of a
groundTruthLidar object.

• Use a labelDefinitionCreatorLidar object to generate a label definitions table. If you save
this table to a MAT-file, you can then load the label definitions into a Lidar Labeler app session by
selecting Open > Label Definitions from the app toolstrip.

• Create the label definitions table at the MATLAB command line.

This table describes the required and optional columns of the table specified in the
LabelDefinitions property.

Column Description Required or
Optional

Name Strings or character vectors specifying the name of each label
definition.

Required

Type labelType enumerations that specify the type of each label
definition.

• For ROI label definitions, the only valid labelType
enumeration is labelType.Cuboid.

• For scene label definitions, the only valid labelType
enumeration is labelType.Scene.

Required

2 Objects

2-192

Column Description Required or
Optional

LabelColor RGB triplets that specify the colors of the label definitions. Values
are in the range [0, 1]. The color yellow (RGB triplet [1 1 0]) is
reserved for the color of selected labels in the Lidar Labeler app.

Optional

When you
define labels in
the Lidar
Labeler app,
you must
specify a color.
Therefore, an
exported label
definitions
table always
includes this
column.

When you
create label
definitions
using the
labelDefini
tionCreator
Lidar object
without
specifying
colors, the
returned label
definition table
includes this
column, but all
column values
are empty.

 groundTruthLidar

2-193

Column Description Required or
Optional

Group Strings or character vectors specifying the group to which each
label definition belongs.

Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Group column.

If you export
label
definitions
from the Lidar
Labeler app or
create them
using a
labelDefini
tionCreator
Lidar object,
the label
definitions
table includes
this column,
even if you did
not specify
groups. The
app assigns
each label
definition a
Group value of
'None'.

2 Objects

2-194

Column Description Required or
Optional

Description Strings or character vectors that describe each label definition. Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Description
column.

If you export
label
definitions
from the Lidar
Labeler app or
create them
using a
labelDefini
tionCreator
Lidar object,
the label
definitions
table includes
this column,
even if you did
not specify
descriptions.
The
Description
for these label
definitions is
an empty
character
vector.

 groundTruthLidar

2-195

Column Description Required or
Optional

Hierarchy Structures containing attribute information for each label
definition.

Field Description
AttributeName1,...,Attri
buteNameN

Attribute information

Each defined attribute has its
own field, where the name of
the field corresponds to the
attribute name. The attribute
value is a structure containing
these fields:

• DefaultValue — Default
value of the attribute,
specified as a numeric scalar
for Numeric attributes, a
string for String attributes,
or a logical scalar or empty
array for Logical
attributes. List attributes
do not contain this field.

• ListItems — List items of
the attribute, specified as a
cell array of character
vectors. Only List attributes
contain this field.

• Description — Description
of the attribute, specified as
a character vector.

Type Type of parent label for the
attributes, specified as a string
or character vector.

Description Description of parent label for
the attributes, specified as a
string or character vector.

If a label definition does not contain attributes, then the table
entry for that label definition is empty.

Optional

When you
define
sublabels or
attributes in
the Lidar
Labeler app or
the
labelDefini
tionCreator
Multisignal
object, the
generated
label
definitions
table includes
this column.

LabelData — Label data for each ROI and scene label
timetable

This property is read-only.

Label data for each ROI and scene label, specified as a timetable. Each column of LabelData
holds labels for a single label definition and corresponds to the Name value for each row in
LabelDefinitions. The storage format for the label data depends on the label type.

2 Objects

2-196

Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

labelType.Scene Logical vector, where true indicates the
presence of the label at that timestamp.

If the Cuboid ROI label data includes attributes, then the labels at each timestamp must be specified
as structures instead. The structure includes these fields.

 groundTruthLidar

2-197

Label Structure Field Description
Position Positions of the parent labels at the given

timestamp

The format of Position for labels of type
Cuboid is described in the previous table.

AttributeName1,...,AttributeNameN Attributes of the parent labels

Each defined attribute has its own field, where
the name of the field corresponds to the attribute
name. The attribute value is a character vector
for a List or String attribute, a numeric scalar
for a Numeric attribute, or a logical scalar for a
Logical attribute. If the attribute is unspecified,
then the attribute value is an empty vector.

Object Functions
changeFilePaths Change file paths in ground truth data
selectLabels Select ground truth data by label name or type
selectLabelsByGroup Select ground truth data by label group name
selectLabelsByName Select ground truth data by label name
selectLabelsByType Select ground truth data by label type

Examples

Create Ground Truth Lidar Object

Create ground truth data for a Velodyne lidar source that captures a car on the road. Specify the
signal sources, label definitions, and ROI label data.

Create a Velodyne data source.

sourceName = fullfile(toolboxdir('vision'),'visiondata', ...
 'lidarData_ConstructionRoad.pcap');
sourceParams = struct();
sourceParams.DeviceModel = 'HDL32E';
sourceParams.CalibrationFile = fullfile(matlabroot,'toolbox','shared', ...
 'pointclouds','utilities','velodyneFileReaderConfiguration', ...
 'HDL32E.xml');

Load the data source.

dataSource = vision.labeler.loading.VelodyneLidarSource;
dataSource.loadSource(sourceName,sourceParams);

Create label definitions.

ldc = labelDefinitionCreatorLidar;
addLabel(ldc,'Car','Cuboid');
labelDefs = ldc.create;

Create ground truth data for lidar sequence.

2 Objects

2-198

numPCFrames = numel(dataSource.Timestamp{1});
carData = cell(numPCFrames,1);
carData{1} = [1.0223 13.2884 1.1456 8.3114 3.8382 3.1460 0 0 0];
lidarData = timetable(dataSource.Timestamp{1},carData, ...
 'VariableNames',{'Car'});

Create the ground truth lidar object.

gTruth = groundTruthLidar(dataSource,labelDefs,lidarData)

gTruth =
 groundTruthLidar with properties:

 DataSource: [1x1 vision.labeler.loading.VelodyneLidarSource]
 LabelDefinitions: [1x5 table]
 LabelData: [40x1 timetable]

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar | labelType | attributeType

 groundTruthLidar

2-199

changeFilePaths
Change file paths in ground truth data

Syntax
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

Description
unresolvedPaths = changeFilePaths(gTruth,alternativePaths) changes the file paths in
a groundTruthLidar object gTruth based on the specified pairs of current paths and alternative
paths alternativePaths. If gTruth is a vector of groundTruthLidar objects, the function
changes the file paths across all objects. The function returns the unresolved paths in
unresolvedPaths. An unresolved path is any current path in alternativePaths not found in
gTruth or any alternative path in alternativePaths not found at the specified path location. In
both cases, unresolvedPaths returns only the current paths.

Examples

Change File Path in Ground Truth Lidar Object

Change the file paths to the data sources in a groundTruthLidar object.

Load a groundTruthLidar object containing multiple labels of groups, types and names into the
workspace. The data source contains the file paths corresponding to the point cloud sequence
showing multiple vehicles. MATLAB® displays a warning that the path to the data source cannot be
found.

load('groundTruthLidar.mat');

Warning: The data source for the following source names could not be loaded. C:\Source

Display the current path to the data source.

gTruth.DataSource

ans =
 PointCloudSequenceSource with properties:

 Name: "Point Cloud Sequence"
 Description: "A PointCloud sequence reader"
 SourceName: "C:\Source"
 SourceParams: [1×1 struct]
 SignalName: "Source"
 SignalType: PointCloud
 Timestamp: {[0 sec]}
 NumSignals: 1

2 Objects

2-200

Specify the current path to the data source and an alternative path and store these paths in a cell
array. Use the changeFilePaths function to update the data source path based on the paths in the
cell array.

The function updates the paths for all labels. As the function resolves all paths, it returns an empty
array of unresolved paths.

currentPathDataSource = "C:\Source";
newPathDataSource = fullfile(matlabroot, 'toolbox', 'lidar', 'lidardata');
alternativeFilePaths = {[currentPathDataSource newPathDataSource]};
unresolvedPaths = changeFilePaths(gTruth, alternativeFilePaths)

unresolvedPaths =

 []

To view the new data source path, use the gTruth.DataSource command.

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

alternativePaths — Alternative file paths
two-element row vector of strings | cell array of two-element row vector of strings

Alternative file paths, specified as a two-element row vector of strings or cell array of two-element
row vectors of strings, where each vector is of the form [pcurrent pnew].

• pcurrent is a current file path in gTruth. This file path can be from the data source or pixel label
data of the gTruth input. Specify pcurrent using backslashes as the path separators.

• pnew is the new path to which to change pcurrent. Specify pnew using either forward slashes or
backslashes as the path separators.

You can specify alternative paths to signal data sources. The DataSource property of gTruth
contains one groundTruthLidar object per signal. The changeFilePaths function updates the
signal paths stored in these objects.

If gTruth is a vector of groundTruthLidar objects, the function changes the file paths across all
objects.

Output Arguments
unresolvedPaths — Unresolved file paths
string array

Unresolved file paths, returned as a string array. If the changeFilePaths function cannot find
either the specified current path in the gTruth input or the specified new path in the specified path
location, then it returns the unresolved current path.

 changeFilePaths

2-201

If the function finds and resolves all file paths, then it returns unresolvedPaths as an empty string
array.

Version History
Introduced in R2020b

See Also
groundTruthLidar

2 Objects

2-202

selectLabels
Select ground truth data by label name or type

Syntax
gtLabel = selectLabels(gTruth,labels)

Description
gtLabel = selectLabels(gTruth,labels) selects ground truth data of the specified label
names or types labels from a groundTruthLidar object gTruth. The function returns a
corresponding groundTruthLidar object gtLabel that contains only the selected labels. If gTruth
is a vector of groundTruthLidar objects, then the function returns a vector of corresponding
groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Name or Label Type

Load a groundTruthLidar object containing labels of various groups, types, and names into the
workspace.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions of types Cuboid and Scene with
various label names.

lidarLabelerGTruth.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Create a new groundTruthLidar object that contains only the label definitions with the name
"car".

labelNames = "car";
gtLidarLabel = selectLabels(lidarLabelerGTruth,labelNames);

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

 selectLabels

2-203

ans=1×5 table
 Name Type LabelColor Group Description
 _______ ______ ________________________ ___________ ___________

 {'car'} Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}

Create a new groundTruthLidar object that contains the label definitions from
lidarLabelerGTruth for only the labels of type Cuboid.

labelType = labelType.Cuboid;
gtLidarLabel = selectLabels(lidarLabelerGTruth,labelType)

gtLidarLabel =
 groundTruthLidar with properties:

 DataSource: [1x1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [4x5 table]
 LabelData: [3x4 timetable]

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labels — Label names or types
one or more label names | one or more label types

Label names or types, specified as one or more label names or one or more label types. Specify one or
more label names as a character vector, string scalar, cell array of character vectors, or vector of
strings. Specify one or more label types as a labelType enumeration or vector of labelType
enumerations.

To view all distinct label names in a groundTruthLidar object, enter the first of these commands at
the MATLAB command prompt. To view all distinct label types in a groundTruthLidar object, enter
the second.

2 Objects

2-204

unique(gTruth.LabelDefinitions.Name)
unique(gTruth.LabelDefinitions.Type)

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]
Example: labelType.Cuboid
Example: [labelType.Cuboid labelType.Scene]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in the gtLabel output corresponds to a groundTruthLidar
object in the gTruth input. The returned objects contain only those labels from the input ground
truth objects that are of the label types or the label names specified in the labels input.

Version History
Introduced in R2020b

See Also
Objects
groundTruthLidar

Functions
selectLabelsByGroup | selectLabelsByType | selectLabelsByName

 selectLabels

2-205

selectLabelsByGroup
Select ground truth data by label group name

Syntax
gtLabel = selectLabelsByGroup(gTruth,labelGroups)

Description
gtLabel = selectLabelsByGroup(gTruth,labelGroups) selects ground truth data with the
specified label group names labelGroups from a groundTruthLidar object gTruth. The function
returns a corresponding groundTruthLidar object gtLabel that contains only the selected labels.
If gTruth is a vector of groundTruthLidar objects, then the function returns a vector of
corresponding groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Group Name

Load a groundTruthLidar object containing multiple labels of groups, types and names.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains two label definitions in a 'vehicle' group.
Ungrouped labels are in the group named 'None'.

lidarLabelerGTruth.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Create a new groundTruthLidar object that contains only the label definitions in the group
'Vehicle' group.

groupNames = 'vehicle';
gtLidarLabel = selectLabelsByGroup(lidarLabelerGTruth,groupNames)

gtLidarLabel =
 groundTruthLidar with properties:

 DataSource: [1x1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [2x5 table]

2 Objects

2-206

 LabelData: [3x2 timetable]

View the labels returned by the function.

gtLidarLabel.LabelDefinitions

ans=2×5 table
 Name Type LabelColor Group Description
 ________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike'} Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelGroups — Label group names
character vector | string scalar | cell array of character vectors | vector of strings

Label group names, specified as a character vector, string scalar, cell array of character vectors, or
vector of strings.

To view all distinct label group names in a groundTruthLidar object, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.Group)

Example: 'Vehicles'
Example: "Vehicles"
Example: {'Vehicles','Signs'}
Example: ["Vehicles" "Signs"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in the gtLabel output corresponds to a groundTruthLidar
object in the gTruth input. The returned objects contain only those labels from the input ground
truth objects that are of the label groups specified by the labelGroup input.

 selectLabelsByGroup

2-207

Version History
Introduced in R2020b

See Also
Objects
groundTruthLidar

Functions
selectLabels | selectLabelsByType | selectLabelsByName

2 Objects

2-208

selectLabelsByName
Select ground truth data by label name

Syntax
gtLabel = selectLabelsByName(gTruth,labelNames)

Description
gtLabel = selectLabelsByName(gTruth,labelNames) selects ground truth data of the
specified label names labelNames from a groundTruthLidar object gTruth. The function returns
a corresponding groundTruthLidar object gtLabel that contains only the selected labels. If
gTruth is a vector of groundTruthLidar objects, then the function returns a vector of
corresponding groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Name

Load a groundTruthLidar object containing labels of various groups, types, and names.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions with various names.

lidarLabelerGTruth.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Create a new groundTruthLidar object that contains only the label definitions with the name
'car'.

labelNames = 'car';
gtLidarLabel = selectLabelsByName(lidarLabelerGTruth,labelNames)

gtLidarLabel =
 groundTruthLidar with properties:

 DataSource: [1x1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [1x5 table]
 LabelData: [3x1 timetable]

 selectLabelsByName

2-209

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

ans=1×5 table
 Name Type LabelColor Group Description
 _______ ______ ________________________ ___________ ___________

 {'car'} Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Lidar ground truth data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelNames — Label names
character vector | string scalar | cell array of character vectors | vector of strings

Label names, specified as a character vector, string scalar, cell array of character vectors, or vector of
strings.

To view all distinct label names in a groundTruthLidar object gTruth, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.Name)

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in gtLabel corresponds to a groundTruthLidar object in the
gTruth input. The returned objects contain only the labels that are of the label names specified by
the labelNames input.

Version History
Introduced in R2020b

2 Objects

2-210

See Also
Objects
groundTruthLidar

Functions
selectLabels | selectLabelsByGroup | selectLabelsByType

 selectLabelsByName

2-211

selectLabelsByType
Select ground truth data by label type

Syntax
gtLabel = selectLabelsByType(gTruth,labelTypes)

Description
gtLabel = selectLabelsByType(gTruth,labelTypes) selects labels of the types specified by
labelTypes from a groundTruthLidar object gTruth. The function returns a corresponding
groundTruthLidar object gtLabel that contains only the selected labels. If gTruth is a vector of
groundTruthLidar objects, then the function returns a vector of corresponding
groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Type

Load a groundTruthLidar object containing labels of various groups, types, and names into the
workspace.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions of type Cuboid and Scene.

lidarLabelerGTruth.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Create a new groundTruthLidar object that contains only the label definitions with the type
'Cuboid'.

labelType = labelType.Cuboid;
gtLidarLabel = selectLabelsByType(lidarLabelerGTruth,labelType)

gtLidarLabel =
 groundTruthLidar with properties:

 DataSource: [1x1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [4x5 table]

2 Objects

2-212

 LabelData: [3x4 timetable]

View the label definitions of the returned groundTruthLidar object.

lidarLabelerGTruth.LabelDefinitions

ans=4×5 table
 Name Type LabelColor Group Description
 ______________ ______ ________________________ ___________ ___________

 {'car' } Cuboid {[0.5862 0.8276 0.3103]} {'vehicle'} {0x0 char}
 {'bike' } Cuboid {[0.5172 0.5172 1]} {'vehicle'} {0x0 char}
 {'pole' } Cuboid {[0.6207 0.3103 0.2759]} {'None' } {0x0 char}
 {'vegetation'} Cuboid {[0 1 0.7586]} {'None' } {0x0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Lidar ground truth data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelTypes — Label types
labelType enumeration | vector of labelType enumerations

Label types, specified as a labelType enumeration or vector of labelType enumerations.

To view all distinct label types in a groundTruthLidar object, enter this command at the MATLAB
command prompt.

unique(gTruth.LabelDefinitions.LabelType)

Example: labelType.Cuboid
Example: [labelType.Cuboid labelType.Scene]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in gtLabel corresponds to a groundTruthLidar object in the
gTruth input. The returned objects contain only the labels that are of the label types specified by the
labelTypes input.

Version History
Introduced in R2020b

 selectLabelsByType

2-213

See Also
Objects
groundTruthLidar

Functions
selectLabels | selectLabelsByGroup | selectLabelsByName

2 Objects

2-214

ibeoLidarReader
Ibeo data container (IDC) file reader

Description
An ibeoLidarReader object stores lidar data present in an Ibeo data container (IDC) file. The IDC
file is captured by Ibeo lidar sensors. The object function, readMessages, uses the object properties
to read Ibeo FUSION SYSTEM or ECU scan data and Ibeo point cloud plane data from IDC files. Ibeo
Automotive Systems is a manufacturer of lidar sensor-based devices. The data captured by these
devices is stored in IDC files.

The reader currently supports message data types 0x2205 and 0x7510 in IDC files. These data types
represent the Ibeo FUSION SYSTEM or ECU scan data and Ibeo point cloud plane data, respectively.

Creation

Syntax
ibeoReader = ibeoLidarReader(fileName)

Description

ibeoReader = ibeoLidarReader(fileName) creates an ibeoLidarReader object that reads
metadata from an IDC file. The fileName input sets the FileName property.

Properties
FileName — Name of IDC file
character vector | string scalar

This property is read-only.

Name of the IDC file, stored as a character vector or string scalar.

MessageTypes — List of supported message types
string scalar | vector of strings

This property is read-only.

List of supported message types available in the IDC file, stored as a string scalar or as a vector of
strings. The possible values of this property are "Scan", "PointCloudPlane", or a vector
containing both.

NumMessages — Total number of supported messages
positive integer

This property is read-only.

 ibeoLidarReader

2-215

Total number of supported messages available in the IDC file, stored as a positive integer.

FileInfo — Information on supported messages
table object

This property is read-only.

Information on supported messages, stored as a table object.

MessageType DataType Description NumMessages TimeStamps
"Scan" "0x2205" "Ibeo FUSION

SYSTEM/ECU
scan data"

30 30-by-1 datetime
arrays

"PointCloudPla
ne"

"0x7510" "Ibeo point
cloud plane"

40 40-by-1 datetime
arrays

• MessageType — Type of message.
• DataType — Data type of message.
• Description — Message data description.
• NumMessages — Number of messages available in the file.
• TimeStamps — Timestamp values for each message in the file, stored as a NumMessages-element

column vector of datetime arrays.

Object Functions
readMessages Read Ibeo scan data and point cloud plane messages

Version History
Introduced in R2020b

See Also
Functions
pcread | pcshow

Objects
lasFileReader | pointCloud | velodyneFileReader

2 Objects

2-216

readMessages
Read Ibeo scan data and point cloud plane messages

Syntax
ptCloud = readMessages(ibeoReader)
[ptCloud,messageData] = readMessages(ibeoReader)
[___] = readMessages(ibeoReader,Name,Value)

Description
ptCloud = readMessages(ibeoReader) reads Ibeo FUSION SYSTEM/ECU scan data and Ibeo
point cloud plane messages from an Ibeo data container (IDC) file. The function returns an array of
pointCloud objects, where each object contains individual message data.

[ptCloud,messageData] = readMessages(ibeoReader) additionally returns the message type
and timestamp for each message. If the message is a point cloud plane message, the function also
returns additional plane information.

[___] = readMessages(ibeoReader,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input argument. For example, 'Messages',"Scan" sets the
message type to read from the IDC file to "Scan".

Input Arguments
ibeoReader — IDC file reader
ibeoLidarReader object

IDC file reader, specified as an ibeoLidarReader object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Messages',"Scan" sets the readMessages function to only read Ibeo scan data
messages from the IDC file.

Messages — Message types to read
["Scan" "PointCloudPlane"] (default) | string scalar | vector of strings | character vector | cell
array of character vectors

Message types to read from the IDC file, specified as the comma-separated pair consisting of
'Messages' and a string scalar, vector of strings, character vector, or a cell array of character
vectors. Each element must be one of these valid message types:

• "Scan"

 readMessages

2-217

• "PointCloudPlane"

Data Types: string | char | cell

Time — Timestamps of messages
total file duration (default) | datetime arrays | 2-element vector of datetime arrays

Timestamps of messages, specified as the comma-separated pair consisting of 'Time' and one of
these options:

• datetime array — Represents a single timestamp
• 1-by-2 datetime array — Represents all timestamps in the range [startTime endTime].

Data Types: datetime

Output Arguments
ptCloud — Point cloud array
array of pointCloud objects

Point cloud array, returned as an array of pointCloud objects. Each element of the returned array is
a point cloud that contains the data of a single message.

messageData — Information on messages read from file
cell array of structures

Information on messages read from the file, returned as a cell array of structures. Each structure
contains this information for a single message.

• MessageType – Type of message, returned as "Scan" or "PointCloudPlane".
• TimeStamp – Timestamp value for each message in the file, returned as a datetime array.

If the value of the MessageType field for a message is "PointCloudPlane", then the structure
contains this additional plane information.

• Label – Classification type of all points in the point cloud, returned as one of these values.

• "Undefined"
• "ScanPoint"
• "LanePoint"
• "CurbstonePoint"
• "GuardrailPoint"
• "RoadmarkingPoint"
• "OffRoadMarkingPoint"

• ReferencePoint – Reference point for the plane points, returned as a three-element vector that
contains the longitude and latitude of the point in degrees and the altitude in meters.

• PlaneOrientation – Plane orientation, returned as a three-element vector that contains the
yaw, pitch, and roll of the plane in degrees.

2 Objects

2-218

Version History
Introduced in R2020b

See Also
Functions
pcread | pcshow

Objects
ibeoLidarReader | lasFileReader | pointCloud | velodyneFileReader

 readMessages

2-219

labelDefinitionCreatorLidar
Store, modify, and create label definitions tables for lidar

Description
The labelDefinitionCreatorLidar object stores definitions of labels and attributes to label
ground truth data for a lidar workflow. Use various “Object Functions” on page 2-220 to add, remove,
modify, or display label definitions. Use the create object function to create a label definitions table
from the labelDefinitionCreatorLidar object. You can use this label definitions table with the
Lidar Labeler app.

Creation

Syntax
ldc = labelDefinitionCreatorLidar
ldc = labelDefinitionCreatorLidar(labelDefs)

Description

ldc = labelDefinitionCreatorLidar creates an empty label definition creator object, ldc, for
the lidar workflow. Add label definitions to this object, as well as modify or remove them, using
various “Object Functions” on page 2-220. Use the info object function to inspect the stored labels
and attributes.

ldc = labelDefinitionCreatorLidar(labelDefs) creates a label definition creator object,
ldc, for a lidar workflow that contains the definitions from the label definitions table labelDefs.

Input Arguments

labelDefs — Label definitions
table

Label definitions, returned as a table with up to eight columns. The possible columns are Name, Type,
Group, Description, LabelColor, and Hierarchy. This table contains the definitions and attributes of
labels used for labeling ground truth lidar data. For more details, see the labelDefinitions
property of the groundTruthLidar object.

Object Functions
addLabel Add label to label definition creator object for lidar workflow
addAttribute Add attribute to label in label definition creator for lidar workflow
editLabelGroup Modify label group name in label definition creator object for lidar

workflow
editLabelDescription Modify label description in label definition creator for lidar workflow
editAttributeDescription Modify attribute description in label definition creator object for lidar

workflow

2 Objects

2-220

editGroupName Change group name in label definition creator for lidar workflow
removeLabel Remove label from label definition creator for lidar workflow
removeAttribute Remove attribute from label in label definition creator for lidar workflow
create Create label definitions table from label definition creator object for lidar workflow
info Display label or attribute information stored in label definition creator for lidar workflow

Examples

Create Label Definition Creator Object for Lidar Workflow and Add Label Definitions

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator.

addLabel(ldc,'Vehicle','Cuboid')

Add a Color attribute to the Vehicle label as a list of three strings.

addAttribute(ldc,'Vehicle','Color','List',{'Red','White','Green'})

Display the details of the updated label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Create a label definitions table from the definition stored in the object.

labelDefs = create(ldc)

labelDefs=1×6 table
 Name Type LabelColor Group Description Hierarchy
 ___________ __________ __________ ________ ___________ ____________

 {'Vehicle'} {[Cuboid]} {0x0 char} {'None'} {' '} {1x1 struct}

Create Label Definition Creator Object for Lidar Workflow from Label Definitions Table

Load a lidar label definitions table into the workspace.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Create a labelDefinitionCreatorLidar object from the label definitions table.

 labelDefinitionCreatorLidar

2-221

ldc = labelDefinitionCreatorLidar(lidarLabelerGTruth.LabelDefinitions)

ldc =
labelDefinitionCreatorLidar contains the following labels:

 car with 0 attributes and belongs to vehicle group. (info)
 bike with 0 attributes and belongs to vehicle group. (info)
 pole with 0 attributes and belongs to None group. (info)
 vegetation with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Add a new attribute to the car label.

addAttribute(ldc,'car','Color','List',{'Red','Green','Blue'})

Display the details of the updated labelDefinitionCreatorLidar object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 car with 1 attributes and belongs to vehicle group. (info)
 bike with 0 attributes and belongs to vehicle group. (info)
 pole with 0 attributes and belongs to None group. (info)
 vegetation with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

Objects
groundTruthLidar

2 Objects

2-222

addAttribute
Add attribute to label in label definition creator for lidar workflow

Syntax
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
addAttribute(___ ,Name,Value)

Description
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
adds an attribute with the specified name and type to the indicated label. The attribute is added to
the hierarchy of the specified label in the labelDefinitionCreatorLidar object ldc.

addAttribute(___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax.

Examples

Add Label and Attribute Using Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar

ldc =
labelDefinitionCreatorLidar

Add a Cuboid label, Vehicle, to the label definition creator object. Include Group information for
the label.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport');

Add a Scene label, TrafficSign, to the object. Include Group information for the label.

addLabel(ldc,'TrafficSign','Scene','Group','Data');

Add a Color attribute to the Vehicle label as a string.

addAttribute(ldc,'Vehicle','Color','String','Red');

Display the details of the updated label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to Transport group. (info)
 TrafficSign with 0 attributes and belongs to Data group. (info)

For more details about attributes, use the info method.

 addAttribute

2-223

Display information about the label Vehicle using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "Transport"
 Attributes: "Color"
 Description: ' '

Display information about the Color attribute of the Vehicle label using the info object function.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: ' '

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This sets the label to which to add the
attribute.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This sets the attribute to add to the
label.

typeOfAttribute — Type of attribute
attributeType enumeration | character vector | string scalar

Type of attribute, specified using one of these options:

• attributeType enumeration — Specify the attribute as a Numeric, Logical, String, or List
attributeType enumerator. For example, attributeType.String specifies a String
attribute type.

• Character vector or string scalar — Specify a value that partially or fully matches one of the
attributeType enumerators. For example, Str specifies a String attribute type.

attributeDefault — Default value of attribute
valid attribute value

2 Objects

2-224

Default value of the attribute, specified as a valid attribute value depending on the value of the
typeOfAttribute argument:

• Numeric — Specify the value as a numeric scalar.
• Logical — Specify the value as a logical scalar.
• String — Specify the value as a character vector or string scalar.
• List — Specify the value as a cell array of character vectors or string scalars. The first element of

the cell array is the default value.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Description','car' sets the description of the added label attribute to 'car'.

Description — Attribute description
' ' (default) | character vector | string scalar

Attribute description, specified as the comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair argument to describe the attribute.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | editAttributeDescription | removeAttribute

 addAttribute

2-225

addLabel
Add label to label definition creator object for lidar workflow

Syntax
addLabel(ldc,labelName,typeOfLabel)
addLabel(___ ,Name,Value)

Description
addLabel(ldc,labelName,typeOfLabel) adds a label with the specified name and type to the
labelDefinitionCreatorLidar object ldc.

addLabel(___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax. For example, Group, truck sets the group of
the added label to truck.

Examples

Create Label Definition Creator Object for Lidar Workflow and Add Label Definitions

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator.

addLabel(ldc,'Vehicle','Cuboid')

Add a Color attribute to the Vehicle label as a list of three strings.

addAttribute(ldc,'Vehicle','Color','List',{'Red','White','Green'})

Display the details of the updated label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Create a label definitions table from the definition stored in the object.

labelDefs = create(ldc)

labelDefs=1×6 table
 Name Type LabelColor Group Description Hierarchy
 ___________ __________ __________ ________ ___________ ____________

2 Objects

2-226

 {'Vehicle'} {[Cuboid]} {0x0 char} {'None'} {' '} {1x1 struct}

Add Label and Attribute Using Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar

ldc =
labelDefinitionCreatorLidar

Add a Cuboid label, Vehicle, to the label definition creator object. Include Group information for
the label.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport');

Add a Scene label, TrafficSign, to the object. Include Group information for the label.

addLabel(ldc,'TrafficSign','Scene','Group','Data');

Add a Color attribute to the Vehicle label as a string.

addAttribute(ldc,'Vehicle','Color','String','Red');

Display the details of the updated label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to Transport group. (info)
 TrafficSign with 0 attributes and belongs to Data group. (info)

For more details about attributes, use the info method.

Display information about the label Vehicle using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "Transport"
 Attributes: "Color"
 Description: ' '

Display information about the Color attribute of the Vehicle label using the info object function.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: ' '

 addLabel

2-227

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This sets the name of the label in the
label definition creator object.

typeOfLabel — Type of label
labelType enumerator | character vector | string scalar

Type of label, specified using one of these options. For example, labelType.Cuboid specifies a
Cuboid label type.

• labelType enumeration — Specify the type of label as a Scene or Cuboid labelType
enumerator.

• Character vector or string scalar — Specify a value that partially or fully matches one of the
labelType enumerators. For example, Cub specifies a Cuboid label type.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Group, truck sets the group of the added label to truck.

Group — Group name
'None' (default) | character vector | string scalar

Group name, specified as a comma-separated pair consisting of 'Group' and the character vector or
string scalar. Use this name-value pair arguments to specify a name for a group of labels.

Description — Label description
' ' (default) | character vector | string scalar

Label description, specified as a comma-separated pair consisting of 'Description' and the
character vector or string scalar. Use this name-value pair arguments to describe the label.

Version History
Introduced in R2020b

2 Objects

2-228

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | editLabelDescription | removeLabel

 addLabel

2-229

create
Create label definitions table from label definition creator object for lidar workflow

Syntax
labelDefs = create(ldc)

Description
labelDefs = create(ldc) creates a label definitions table, labelDefs, from the
labelDefinitionCreatorLidar object ldc. You can import the labelDefs table into the Lidar
Labeler app to label ground truth lidar data.

Examples

Create Label Definitions Table from Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc, 'Vehicle','Cuboid','Description','Use this label for Cars and buses.')

Add a logical attribute, IsCar, to the Vehicle label.

addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')

Create a label definitions table from the definitions stored in the object.

labelDefs = create(ldc)

labelDefs=1×6 table
 Name Type LabelColor Group Description Hierarchy
 ___________ __________ __________ ________ ______________________________________ ____________

 {'Vehicle'} {[Cuboid]} {0x0 char} {'None'} {'Use this label for Cars and buses.'} {1x1 struct}

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object. The object defines the labels and attributes used for generating the label definitions table
labelDefs.

2 Objects

2-230

Output Arguments
labelDefs — Label definitions
table

Label definitions, returned as a table with up to eight columns. The possible columns are Name, Type,
Group, Description, LabelColor, and Hierarchy. This table contains the definitions and attributes of
labels used for labeling ground truth lidar data. For more details, see the labelDefinitions
property of the groundTruthLidar object.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | addLabel | info

 create

2-231

editAttributeDescription
Modify attribute description in label definition creator object for lidar workflow

Syntax
editAttributeDescription(ldc,labelName,attributeName,description)

Description
editAttributeDescription(ldc,labelName,attributeName,description) modifies the
description of the specified attribute attributeName of the label labelName. The label must be
contained within the labelDefinitionCreatorLidar object ldc.

Examples

Modify Attribute Description in Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid');

Add a Color attribute to the Vehicle label.

addAttribute(ldc,'Vehicle','Color','String','Red')

Display the created attribute.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: ' '

Modify the attribute description.

editAttributeDescription(ldc,'Vehicle','Color','Color of the vehicle in RGB format - [1 0 0]')

Display the attribute details to confirm the updated description field.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: 'Color of the vehicle in RGB format - [1 0 0]'

2 Objects

2-232

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label with which the
attribute is associated.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This identifies the attribute to modify.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar. This sets the new description for the
attribute specified by the attributeName.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
editLabelDescription

 editAttributeDescription

2-233

editGroupName
Change group name in label definition creator for lidar workflow

Syntax
editGroupName(ldc,oldname,newname)

Description
editGroupName(ldc,oldname,newname) changes the existing group name oldname to the
specified group name newname. This function changes the group name for all label definitions that
have the group name oldname.

Examples

Edit Label Group in Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Display information about the label.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: ' '

Edit the group name of the label.

editGroupName(ldc,'None','Transport')

Display the information of the label. Confirm that the Group field is updated.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "Transport"
 Attributes: []
 Description: ' '

2 Objects

2-234

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

oldname — Existing group name
character vector | string scalar

Existing group name, specified as a character vector or string scalar. This identifies group name to
modify. The group name must already exist within the specified label definition creator object.

newname — New group name
character vector | string scalar

New group name, specified as a character vector or string scalar. This sets the new group name.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
editLabelDescription | editLabelGroup

 editGroupName

2-235

editLabelDescription
Modify label description in label definition creator for lidar workflow

Syntax
editLabelDescription(ldc,labelName,description)

Description
editLabelDescription(ldc,labelName,description) modifies the description of the
specified label labelName. The label must be contained within the
labelDefinitionCreatorLidar object ldc.

Examples

Modify Label Description in Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Modify the description of the Vehicle label.

editLabelDescription(ldc,'Vehicle','Use this label for cars and buses.')

Display the label information. Confirm that the Description field has been updated.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: 'Use this label for cars and buses.'

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

2 Objects

2-236

Label name, specified as a character vector or string scalar. This identifies the label to update.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar. This sets the new description for the
label specified by the labelName argument.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
editAttributeDescription

 editLabelDescription

2-237

editLabelGroup
Modify label group name in label definition creator object for lidar workflow

Syntax
editLabelGroup(ldc,labelName,groupName)

Description
editLabelGroup(ldc,labelName,groupName) modifies the group name of the specified label
identified by labelName. The label must be contained within the labelDefinitionCreatorLidar
object ldc.

Examples

Modify Label Group Name in Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport')

Add a Cuboid label, Car, to the label definition creator object.

addLabel(ldc,'Car','Cuboid','Group','Four Wheeler')

Display the label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to Transport group. (info)
 Car with 0 attributes and belongs to Four Wheeler group. (info)

For more details about attributes, use the info method.

Change the group of the Car label from Four Wheeler to Transport.

editLabelGroup(ldc,'Car','Transport')
ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to Transport group. (info)
 Car with 0 attributes and belongs to Transport group. (info)

2 Objects

2-238

For more details about attributes, use the info method.

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label to modify.

groupName — Group name
character vector | string scalar

Group name, specified as a character vector or string scalar. This sets the group to which the function
assigns the label specified by the labelName argument.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
editGroupName | editLabelDescription

 editLabelGroup

2-239

info
Display label or attribute information stored in label definition creator for lidar workflow

Syntax
info(ldc,name)
infoStruct = info(ldc,name)

Description
info(ldc,name) displays information about the specified label or attribute name stored in the
labelDefinitionCreatorLidar object ldc.

infoStruct = info(ldc,name) returns the information as a structure.

Examples

Save Definitions from Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, with Group and Description information to the label definition
creator object.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport','Description','Use this label for cars and buses')

Create a structure array containing the label information.

infoStruct = info(ldc,'Vehicle')

infoStruct = struct with fields:
 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "Transport"
 Attributes: []
 Description: 'Use this label for cars and buses'

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

2 Objects

2-240

name — Name of label or attribute
character vector | string scalar

Name of the label or attribute in the ldc object, specified as a character vector or string scalar. The
form of the argument depends on the type of name specified.

• To specify a label, use the form 'labelName'. For example, 'TrafficLight' specifies the label
with the label name TrafficLight.

• To specify an attribute, use the form 'labelName/attributeName'. For example, 'TrafficLight/
Active' specifies the Active attribute of the label with the label name TrafficLight.

Output Arguments
infoStruct — Information structure
structure

Information structure, returned as a structure that contains the fields Name, SignalType (for labels),
LabelType (for labels), Type (for attributes), Description, Attributes (when pertinent),
DefaultValue (for attributes), and ListItems (for List attributes).

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | create

 info

2-241

removeAttribute
Remove attribute from label in label definition creator for lidar workflow

Syntax
removeAttribute(ldc,labelName,attributeName)

Description
removeAttribute(ldc,labelName,attributeName) removes the specified attribute
attributeNamefrom the label labelName in the labelDefinitionCreatorLidar object ldc.

Examples

Remove Attribute from Label in Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Add a String attribute, Color, to the Vehicle label.

addAttribute(ldc,'Vehicle','Color','String','Red')

Add another String attribute, Classification, to the label.

addAttribute(ldc,'Vehicle','Classification','String','Car')

Display the label information using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}
 LabelColor: {''}
 Group: "None"
 Attributes: ["Color" "Classification"]
 Description: ' '

Remove an attribute from the Vehicle label.

removeAttribute(ldc,'Vehicle','Color')

Display the label information. Confirm that the Attributes field has been updated.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: {[Cuboid]}

2 Objects

2-242

 LabelColor: {''}
 Group: "None"
 Attributes: "Classification"
 Description: ' '

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label from which to
remove the attribute.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This identifies the attribute to remove
from the label specified by the labelName argument.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | addLabel | removeLabel

 removeAttribute

2-243

removeLabel
Remove label from label definition creator for lidar workflow

Syntax
removeLabel(ldc,labelName)

Description
removeLabel(ldc,labelName) removes the specified label labeName from the
labelDefinitionCreatorLidar object ldc.

Examples

Remove Label from Lidar Label Definition Creator

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Add a Cuboid label, Car, to the object.

addLabel(ldc,'Car','Cuboid')

Display the label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to None group. (info)
 Car with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Remove the 'Car' label and display the object to confirm that the label has been removed.

removeLabel(ldc,'Car')
ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

2 Objects

2-244

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label to remove from
the label definition creator object.

Version History
Introduced in R2020b

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | addAttribute | removeAttribute

 removeLabel

2-245

vision.labeler.loading.MultiSignalSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: matlab.mixin.Heterogeneous

Interface for loading signal data into Lidar Labeler app

Description
The vision.labeler.loading.MultiSignalSource class creates an interface for loading a point
cloud signal from a data source into the Lidar Labeler app.

The interface created using this class enables you to customize the panel for loading data sources in
the Select Point Cloud dialog box of the app. The figure shows a sample loading panel.

The class also provides an interface to read frames from loaded signals. The app renders these
frames for labeling.

The class supports loading these data sources:

• vision.labeler.loading.PointCloudSequenceSource — Point cloud sequence folder
• vision.labeler.loading.VelodyneLidarSource — Velodyne packet capture (PCAP) file
• lidar.labeler.loading.LasFileSequenceSource — LAS or LAZ file
• lidar.labeler.loading.RosbagSource — Rosbag file
• lidar.labeler.loading.CustomPointCloudSource — Custom source file

The vision.labeler.loading.MultiSignalSource class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

2 Objects

2-246

Properties
Name — Name of source type
string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Description — Description of class functionality
string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

SourceName — Name of data source
string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from data source
structure

Parameters for loading signals from the data source into the app, specified as a structure. The fields
of this structure contain values that the loadSource method requires to load the signal.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

 vision.labeler.loading.MultiSignalSource class

2-247

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
nonnegative integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

Abstract true

2 Objects

2-248

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

Abstract true

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

Abstract true

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

Abstract true

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

 vision.labeler.loading.MultiSignalSource class

2-249

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

2 Objects

2-250

vision.labeler.loading.PointCloudSequenceSource
class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from point cloud sequence sources into Lidar Labeler app

Description
The vision.labeler.loading.PointCloudSequenceSource class creates an interface for
loading a signal from a point cloud sequence data source into the Lidar Labeler app. In the Select
Point Cloud dialog box of the app, when Source Type is set to Point Cloud Sequence, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads point cloud sequences composed of PCD or PLY files.

The vision.labeler.loading.PointCloudSequenceSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a point cloud sequence
source, the exported groundTruthLidar object stores an instance of this class in its DataSource
property.

To create a PointCloudSequenceSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
vision.labeler.loading.PointCloudSequenceSource function (described here).

 vision.labeler.loading.PointCloudSequenceSource class

2-251

Syntax
pcSeqSource = vision.labeler.loading.PointCloudSequenceSource

Description

pcSeqSource = vision.labeler.loading.PointCloudSequenceSource creates a
PointCloudSequenceSource object for loading a signal from a point cloud sequence data source.
To specify the data source and the parameters required to load the source, use the loadSource
method.

Properties
Name — Name of source type
"Point Cloud Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A PointCloud sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading point cloud sequence signal from data source
[] (default) | structure

Parameters for loading a point cloud sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-252

Field Description Required or Optional
Timestamps Timestamps for the point cloud

sequence signal, specified as a
cell array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
point cloud sequence signals,
then the structure does not
include this field, and the
SourceParams property is
empty, []. For point cloud
sequence signals, the default
timestamp duration vector has
elements from 0 to the number
of valid point cloud files minus
1. Units are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

 vision.labeler.loading.PointCloudSequenceSource class

2-253

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-254

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Point Cloud Sequence Source

Specify the path to a folder containing a point cloud sequence.

pcSeqFolder = fullfile(toolboxdir('vision'),'visiondata', ...
 'pcdmapseq');

Create a point cloud sequence source. The sequence does not have a separate timestamps file to load
with it, so specify the source parameters as empty. Load the folder path and the empty source
parameters into the PointCloudSequenceSource object.

sourceName = pcSeqFolder;
sourceParams = [];

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
loadSource(pcseqSource,sourceName,sourceParams)

Read the first frame in the sequence. Display the frame.

signalName = pcseqSource.SignalName;
pc = readFrame(pcseqSource,signalName,1);

figure
pcshow(pc)

 vision.labeler.loading.PointCloudSequenceSource class

2-255

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

Classes
vision.labeler.loading.VelodyneLidarSource |
lidar.labeler.loading.LasFileSequenceSource |
lidar.labeler.loading.RosbagSource

2 Objects

2-256

vision.labeler.loading.VelodyneLidarSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from Velodyne lidar sources into Lidar Labeler app

Description
The vision.labeler.loading.VelodyneLidarSource class creates an interface for loading a
signal from a Velodyne packet capture (PCAP) lidar data source into the Lidar Labeler app. In the
Select Point Cloud dialog box of the app, when Source Type is set to Velodyne Lidar, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads Velodyne PCAP files from the device models accepted by the velodyneFileReader
function.

The vision.labeler.loading.VelodyneLidarSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a Velodyne lidar source, the
exported groundTruthLidar object stores an instance of this class in its DataSource property.

To create a VelodyneLidarSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
vision.labeler.loading.VelodyneLidarSource function (described here).

Syntax
velodyneSource = vision.labeler.loading.VelodyneLidarSource

 vision.labeler.loading.VelodyneLidarSource class

2-257

Description

velodyneSource = vision.labeler.loading.VelodyneLidarSource creates a
VelodyneLidarSource object for loading a signal from a Velodyne lidar data source. To specify the
data source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Velodyne Lidar" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A Velodyne file reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading Velodyne lidar signal from data source
[] (default) | structure

Parameters for loading a Velodyne lidar signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-258

Field Description Required or Optional
Timestamps Timestamps for the Velodyne

lidar signal, specified as a cell
array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From File and read the
timestamps from the Velodyne
PCAP file, then the structure
does not include this field.

DeviceModel Velodyne device model name,
specified as one of these
options.

• 'VLP16' (default) — VLP-16
device model

• 'PuckLITE' — Puck LITE
device model

• 'PuckHiRes' — Puck Hi-
Res device model

• 'VLP32C' — VLP-32C device
model

• 'HDL32E' — HDL-32E
device model

• 'HDL64E' — HDL-64E
device model

If you specify the incorrect
device model for your Velodyne
PCAP file, the app loads an
improperly calibrated point
cloud.

In the Select Point Cloud dialog
box of the app, select the device
model from the Device Model
parameter. The Calibration
File parameter updates to the
calibration file of the selected
device model.

Required

 vision.labeler.loading.VelodyneLidarSource class

2-259

Field Description Required or Optional
CalibrationFile Name of the Velodyne

calibration XML file, specified
as a character vector or string
scalar.

To specify one of the calibration
files included with your
MATLAB installation, at the
MATLAB command prompt,
enter this code. Replace
<DeviceModel> with the name
of the device model that you
specify in the DeviceModel
field of this structure (without
quotes).
calibrationFile = fullfile(...
 matlabroot,'toolbox', ...
 'shared','pointclouds','utilities', ...
 'velodyneFileReaderConfiguration', ...
 '<DeviceModel>.xml')

By default, the
CalibrationFile field is set
to the full path to the
VLP16.xml file, which is the
calibration file for the VLP-16
device model.

In the Select Point Cloud dialog
box of the app, when you
change the Device Model
parameter selection, the
Calibration File parameter
updates to the corresponding
calibration file for the selected
device model. You can also
browse for or enter a path to a
different calibration file in the
Calibration File box.

Required

For more details on device models and calibration files, see the velodyneFileReader object
reference page.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

2 Objects

2-260

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

 vision.labeler.loading.VelodyneLidarSource class

2-261

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Velodyne Lidar Source

Specify the name of the Velodyne® lidar data source, a packet capture (PCAP) file.

2 Objects

2-262

sourceName = fullfile(toolboxdir('vision'),'visiondata', ...
 'lidarData_ConstructionRoad.pcap');

Specify information needed to load the source, including the device model of the lidar and the
calibration file.

sourceParams = struct;
sourceParams.DeviceModel = 'HDL32E';
sourceParams.CalibrationFile = fullfile(matlabroot,'toolbox','shared', ...
 'pointclouds','utilities','velodyneFileReaderConfiguration', ...
 'HDL32E.xml');

Create the Velodyne lidar data source. Load the data source path, device model, and calibration file
path into the VelodyneLidarSource object.

velodyneSource = vision.labeler.loading.VelodyneLidarSource;
loadSource(velodyneSource,sourceName,sourceParams)

Read the first frame from the source. Display the frame.

signalName = velodyneSource.SignalName;
pc = readFrame(velodyneSource,signalName,1);

figure
pcshow(pc)

 vision.labeler.loading.VelodyneLidarSource class

2-263

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

Classes
vision.labeler.loading.PointCloudSequenceSource |
lidar.labeler.loading.LasFileSequenceSource |
lidar.labeler.loading.RosbagSource

2 Objects

2-264

lidar.labeler.loading.LasFileSequenceSource class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from LAS or LAZ file sequence sources into Lidar Labeler app

Description
The lidar.labeler.loading.LasFileSequenceSource class creates an interface for loading a
signal from a LAS or LAZ file sequence data source into the Lidar Labeler app. In the Select Point
Cloud dialog box of the app, when Source Type is set to LAS/LAZ File Sequence, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

The lidar.labeler.loading.LasFileSequenceSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a LAS or LAZ file sequence
source, the exported groundTruthLidar object stores an instance of this class in its DataSource
property.

To create a LasFileSequenceSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
lidar.labeler.loading.LasFileSequenceSource function (described here).

Syntax
lasSeqSource = lidar.labeler.loading.LasFileSequenceSource

 lidar.labeler.loading.LasFileSequenceSource class

2-265

Description

lasSeqSource = lidar.labeler.loading.LasFileSequenceSource creates a
LasFileSequenceSource object for loading a signal from a LAS or LAZ file sequence data source.
To specify the data source and the parameters required to load the source, use the loadSource
method.

Properties
Name — Name of source type
"LAS/LAZ File Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A LAS/LAZ file sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading LAS or LAZ file sequence signal from data source
[] (default) | structure

Parameters for loading a LAS or LAZ file sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-266

Field Description Required or Optional
Timestamps Timestamps for the LAS or LAZ

file sequence signal, specified as
a cell array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
LAS or LAZ file sequence
signals, then the structure does
not include this field, and the
SourceParams property is
empty, []. For LAS or LAZ file
sequence signals, the default
timestamp duration vector has
elements from 0 to the number
of valid LAS or LAZ files minus
1. Units are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

 lidar.labeler.loading.LasFileSequenceSource class

2-267

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-268

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create LAS File Sequence Source

Specify the path to a folder containing a LAS file sequence.

lasSeqFolder = fullfile(toolboxdir('lidar'),'lidardata','las');

The LAS file consists of two point cloud frames that occur at one-second intervals. Specify the
timestamps of the frames as a duration vector of two seconds.

timestamps = seconds(1:2);

Create a LAS file sequence source. Load the folder path and timestamps into the
LasFileSequenceSource object.

sourceName = lasSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

lasSeqSource = lidar.labeler.loading.LasFileSequenceSource;
loadSource(lasSeqSource,sourceName,sourceParams)

Read the second frame in the sequence. Display the frame.

signalName = lasSeqSource.SignalName;
pc = readFrame(lasSeqSource,signalName,2);

figure
pcshow(pc)

 lidar.labeler.loading.LasFileSequenceSource class

2-269

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

Classes
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource | lidar.labeler.loading.RosbagSource

2 Objects

2-270

lidar.labeler.loading.RosbagSource class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from rosbag sources into Lidar Labeler app

Description
The lidar.labeler.loading.RosbagSource class creates an interface for loading a signal from a
rosbag file into the Lidar Labeler app. In the Select Point Cloud dialog box of the app, when Source
Type is set to Rosbag, this class controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads signals from the sensor_msgs/PointCloud2 ROS message type only.

Note This class requires ROS Toolbox.

The lidar.labeler.loading.RosbagSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a rosbag source, the
exported groundTruthLidar object stores an instance of this class in its DataSource property.

To create a RosbagSource object programmatically, such as when programmatically creating a
groundTruthLidar object, use the lidar.labeler.loading.RosbagSource function (described
here).

Syntax
rosbagSource = lidar.labeler.loading.RosbagSource

 lidar.labeler.loading.RosbagSource class

2-271

Description

rosbagSource = lidar.labeler.loading.RosbagSource creates a RosbagSource object for
loading a signal from a rosbag data source. To specify the data source and the parameters required to
load the source, use the loadSource method.

Properties
Name — Name of source type
"Rosbag" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A rosbag reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from rosbag data source
[] (default) | empty structure

Parameters for loading signals from a rosbag data source, specified as an empty structure. When you
load a point cloud signal from a rosbag, do not specify the signal timestamps or any other
parameters. The loadSource method reads these parameters from the rosbag.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

2 Objects

2-272

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

 lidar.labeler.loading.RosbagSource class

2-273

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Version History
Introduced in R2020b

2 Objects

2-274

See Also
Apps
Lidar Labeler

Classes
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource |
lidar.labeler.loading.LasFileSequenceSource

 lidar.labeler.loading.RosbagSource class

2-275

lidar.syncImageViewer.SyncImageViewer class
Package: lidar.syncImageViewer

Interface to connect external tool to Lidar Labeler app

Description
The lidar.syncImageViewer.SyncImageViewer class creates an interface between a custom
visualization or analysis tool and a point cloud signal in the Lidar Labeler app. You can use the
SyncImageViewer class to sync video and image sequence signals to the app only.

Creation
The SyncImageViewer specifies the interface for connecting an external tool to the Lidar Labeler
app. An external tool can be a custom visualization tool or custom analysis tool. The class that
inherits from the SyncImageViewer interface is called the client. The client performs these tasks:

• Syncs an external tool to each frame change event for a specific signal loaded into the Lidar
Labeler app. Syncing enables you to control the external tool through the range slider and
playback controls of the app.

• Controls the current time in the external tool and the corresponding display in the app.

To connect an external tool to the Lidar Labeler app, follow these steps:

1 Define a client class that inherits from lidar.syncImageViewer.SyncImageViewer. You can
use the SyncImageViewer class template to define a class and implement your custom
visualization or analysis tool. At the MATLAB command prompt, enter this code:

lidar.syncImageViewer.SyncImageViewer.openTemplateInEditor

Follow the steps in the template.
2 Save the file to any folder on the MATLAB path. Alternatively, save the file to a folder outside the

MATLAB path and add the folder to MATLAB path by using the addpath function.

Properties
VideoStartTime — Start time of signal
real scalar in seconds

Start time of the signal, specified as a real scalar in seconds.
Attributes:

GetAccess public
SetAccess private

VideoEndTime — End time of signal
real scalar in seconds

End time of the signal, specified as a real scalar in seconds.

2 Objects

2-276

Attributes:

GetAccess public
SetAccess private

StartTime — Start of time interval in app
real scalar in seconds

Start of the time interval in the app, specified as a real scalar in seconds. To set the start time, use
the start flag interval in the app.

Attributes:

GetAccess public
SetAccess private

CurrentTime — Time of frame currently displaying in app
real scalar in seconds

Time of the frame currently displaying in the app for the connected signal, specified as a real scalar
in seconds. If the slider is between two timestamps, then the currently displaying frame is the frame
that is at the previous timestamp.

Attributes:

GetAccess public
SetAccess private

EndTime — End of time interval in app
real scalar in seconds

End of the time interval in the app, specified as a real scalar in seconds. To set the end time, use the
end flag interval in the app.

Attributes:

GetAccess public
SetAccess private

TimeVector — Timestamps for connected signal
duration vector

Timestamps for the connected signal, specified as a duration vector. This signal must be the master
signal. If you change the master signal, the TimeVector property updates to the timestamps for new
master signal.

Attributes:

GetAccess public
SetAccess private

Methods
Public Methods
dataSourceChangeListener Update external tool when connecting to signal being loaded into Lidar

Labeler app

 lidar.syncImageViewer.SyncImageViewer class

2-277

frameChangeListener Update external tool when new frame is displayed in Lidar Labeler app
updateLabelerCurrentTime Update current time in Lidar Labeler app
close Close external tool connected to Lidar Labeler app
disconnect Disconnect external tool from Lidar Labeler app

Examples

Connect Image Display to Lidar Labeler

Connect an image display tool to the Lidar Labeler app. Use the app and tool to display
synchronized lidar and image data.

Specify the name of the lidar data to load into the app.

sourceName = fullfile("lidarSequence");

Connect the video display to the app and display synchronized data.

lidarLabeler(sourceName,"SyncImageViewerTargetHandle",@helperSyncImageDisplay);

2 Objects

2-278

Tips
• For an example of an external tool, see the SyncImageDisplay implementation of the

lidar.syncImageViewer.SyncImageViewer class. This class implements an image display
tool. You can use this code as a starting point for creating your own tools.

edit SyncImageDisplay

Version History
Introduced in R2020b

See Also
Apps
Lidar Labeler

 lidar.syncImageViewer.SyncImageViewer class

2-279

close
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Close external tool connected to Lidar Labeler app

Syntax
close(syncImageObj)

Description
close(syncImageObj) provides the option to close the external tool that is connected to the Lidar
Labeler app when the app closes. The app calls this method using the syncImageObj object.

Note The client class can optionally implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

Version History
Introduced in R2020b

See Also
lidar.syncImageViewer.SyncImageViewer | Lidar Labeler

2 Objects

2-280

dataSourceChangeListener
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update external tool when connecting to signal being loaded into Lidar Labeler app

Syntax
dataSourceChangeListener(syncImageObj)

Description
dataSourceChangeListener(syncImageObj) provides the option to update the external tool
when loading a new data source is loaded into the Lidar Labeler app. The app calls this method
using the syncImageObj object.

Note The client class can optionally implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

Version History
Introduced in R2020b

See Also
lidar.syncImageViewer.SyncImageViewer | Lidar Labeler

 dataSourceChangeListener

2-281

disconnect
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Disconnect external tool from Lidar Labeler app

Syntax
disconnect(syncImageObj)

Description
disconnect(syncImageObj) disconnects the interface between an external tool and the Lidar
Labeler app. The client calls this method using the syncImageObj object. After the external tool is
disconnected, the Lidar Labeler app no longer calls the frameChangeListener method in the
client class.

Note The client class can call this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

Version History
Introduced in R2020b

See Also
lidar.syncImageViewer.SyncImageViewer | Lidar Labeler

2 Objects

2-282

frameChangeListener
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update external tool when new frame is displayed in Lidar Labeler app

Syntax
frameChangeListener(syncImageObj)

Description
frameChangeListener(syncImageObj) provides an option to synchronize an external tool with
the frame changes in the Lidar Labeler app. The app calls this method when a new frame is
displayed in the app. If the slider is between two timestamps, then the app displays the frame that is
at the previous timestamp.

Note The client class must implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

Version History
Introduced in R2020b

See Also
lidar.syncImageViewer.SyncImageViewer | Lidar Labeler

 frameChangeListener

2-283

updateLabelerCurrentTime
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update current time in Lidar Labeler app

Syntax
updateLabelerCurrentTime(syncImageObj,newTime)

Description
updateLabelerCurrentTime(syncImageObj,newTime) updates the current time in the Lidar
Labeler app to newTime. The client calls this method using the syncImageObj object.

Note The client class can call this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

newTime — Current time for app
real scalar in seconds

Current time for Lidar Labeler app, specified as a real scalar in seconds. The newTime value sets
the current time in the Lidar Labeler app.

Version History
Introduced in R2020b

See Also
lidar.syncImageViewer.SyncImageViewer | Lidar Labeler

2 Objects

2-284

lasFileReader
LAS or LAZ file reader

Description
A lasFileReader object stores the metadata present in the LAS or LAZ file as read-only properties.
The object function, readPointCloud, uses these properties to read point cloud data from the file.
The lasFileReader object supports up to the LAS 1.4 specification.

A LAS file contains a public header, which has lidar metadata, followed by lidar point records. Each
point record contains attributes such as 3-D coordinates, intensity, and GPS timestamp.

The LAS file format is an industry-standard binary format for storing lidar data, developed and
maintained by the American Society for Photogrammetry and Remote Sensing (ASPRS). The LAZ file
format is a compressed version of the LAS file format.

Creation

Syntax
lasReader = lasFileReader(fileName)

Description

lasReader = lasFileReader(fileName) creates a lasFileReader object with properties set
by reading the metadata present in the LAS or LAZ file fileName. The fileName input sets the
FileName property.

Properties
FileName — Name of LAS or LAZ file
character vector | string scalar

This property is read-only.

Name of the LAS or LAZ file, specified as a character vector or string scalar.

Count — Number of available point records
positive integer

This property is read-only.

Number of available point records in the file, specified as a positive integer.

LasVersion — LAS or LAZ file version
character vector

This property is read-only.

 lasFileReader

2-285

LAS or LAZ file version, specified as a character vector.

XLimits — Range of coordinates along x-axis
two-element real-valued row vector

This property is read-only.

Range of coordinates along the x-axis, specified as a two-element real-valued row vector.

YLimits — Range of coordinates along y-axis
two-element real-valued row vector

This property is read-only.

Range of coordinates along the y-axis, specified as a two-element real-valued row vector.

ZLimits — Range of coordinates along z-axis
two-element real-valued row vector

This property is read-only.

Range of coordinates along the z-axis, specified as a two-element real-valued row vector.

GPSTimeLimits — Range of GPS timestamps
1-by-2 duration vector

This property is read-only.

Range of GPS timestamp readings, specified as a 1-by-2 duration vector.

NumReturns — Maximum of all point laser returns
1 (default) | positive integer

This property is read-only.

Maximum of all point laser returns, specified as a positive integer.

NumClasses — Maximum of all point classification values
1 (default) | positive integer

This property is read-only.

Maximum of all point classification values, specified as a positive integer.

SystemIdentifier — Name of hardware sensor system identifier
string scalar

This property is read-only.

Name of the hardware sensor system identifier that generated the LAS files, specified as a string
scalar.

GeneratingSoftware — Name of generating software
string scalar

This property is read-only.

2 Objects

2-286

Name of the generating software, specified as a string scalar. This property specifies the generating
software package used when the LAS file was created.

FileCreationDate — Date of file creation
datetime object

This property is read-only.

Date of file creation, specified as a datetime object.

FileSourceID — LAS file source identifier
nonnegative integer

This property is read-only.

LAS file source identifier, specified as a nonnegative integer. Values are in the range 0 to 65535. This
defines the flight line number if this file was created from an original flight line. A value 0 specifies
that no ID has been assigned. Use the ProjectID and FileSourceID properties to uniquely identify
each point in a LAS file.

ProjectID — Project ID
string scalar

This property is read-only.

Project ID, specified as a string scalar. This value is a globally unique identifier (GUID). Use the
ProjectID and FileSourceID properties to uniquely identify each point in a LAS file.

PointDataFormat — Point data record format ID
nonnegative integer

This property is read-only.

Point data record format ID, specified as a nonnegative integer. Values are in the range 0 to 10. For
more information, see “Point Data Record Format” on page 2-290.

ClassificationInfo — Classification information
table

This property is read-only.

Classification information, specified as a table. Each row of the table contains this information
describing a point class:

• Classification Value — Unique classification ID number for the class, specified as a positive
integer.

• Class Name — Label associated with the class, specified as a string scalar.
• Number of Points by Class — Number of points in the class, specified as a positive integer.

LaserReturnInfo — Laser return information
table

This property is read-only.

 lasFileReader

2-287

Laser return information, specified as a table. Each row of the table contains this information
describing a laser return:

• Laser Return Number — Laser return number, specified as a positive integer.
• Number of Points by Return — Number of points per laser return, specified as a positive

integer.

VariableLengthRecords — Variable length record information
table

This property is read-only.

Variable length record (VLR) or extended VLR information, specified as a table. Each row of the table
contains this information describing a record:

• Record ID — Record identification number, specified as a positive integer.
• User ID — User identification associated with record ID, specified as a string scalar.
• Description — Description of record, specified as a string scalar.

Object Functions
readPointCloud Read point cloud data from LAS or LAZ file
readCRS Read coordinate reference system data from LAS or LAZ file
readVLR Read variable length record from LAS or LAZ file
hasCRSData Check if LAS or LAZ file has CRS data
hasGPSData Check if LAS or LAZ file has GPS data
hasWaveformData Check if LAS or LAZ file has waveform data
hasNearIRData Check if LAS or LAZ file has near IR data

Examples

Read Point Cloud Data from LAZ File

This example shows how to read and visualize point cloud data from a LAS / LAZ file.

Create a lasFileReader object for a LAZ file. Then, use the readPointCloud function to read
point cloud data from the LAZ file and generate a pointCloud object.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud.

figure
pcshow(ptCloud.Location)

2 Objects

2-288

Visualize Point Cloud Based on Classification Data from LAZ File

Segregate and visualize point cloud data based on classification data from a LAZ file.

Create a lasFileReader object to access data from the LAZ file.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Read point cloud data and associated classification point attributes from the LAZ file using the
readPointCloud function.

[ptCloud,pointAttributes] = readPointCloud(lasReader,"Attributes","Classification");

Color the points based on their classification attributes. Reshape the label image into the shape of the
point cloud.

labels = label2rgb(pointAttributes.Classification);
colorData = reshape(labels,[],3);

Visualize the color-coded point cloud.

figure
pcshow(ptCloud.Location,colorData)

 lasFileReader

2-289

More About
Point Data Record Format

A LAS file contains point cloud data as a collection of point data records, as well as a public header
block and optional metadata information about the records. The public header block indicates the
point numbers and point data bounds of the LAS file, as well as the point data record format.

As of the LAS 1.4 specification, there are 11 point data record formats, ranging from Point Data
Record Format 0 to Point Data Record Format 10, divided into two major groups.

• Point Data Record Format 0 to Point Data Record Format 5 — These formats contain 20 core
bytes, with formats 1–5 adding optional information about GPS time, color channels, or wave
packets.

• Point Data Record Format 6 to Point Data Record Format 10 — These formats contain 30 core
bytes, with formats 7–10 adding optional information about color channels, near IR, or wave
packets.

For more information, including which point data record formats are available for each version of the
LAS file specification, see the ASPRS LASER (LAS) File Format Exchange Activities page.

Version History
Introduced in R2020b

2 Objects

2-290

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities

R2022a: Object has additional properties

The lasFileReader object includes these additional properties:

• SystemIdentifier
• GeneratingSoftware
• FileCreationDate
• FileSourceID
• ProjectID
• PointDataFormat
• ClassificationInfo
• LaserReturnInfo
• VariableLengthRecords

See Also
Functions
pcread | pcshow

Objects
lasFileWriter | pointCloud | lidarPointAttributes | ibeoLidarReader |
velodyneFileReader

 lasFileReader

2-291

readPointCloud
Read point cloud data from LAS or LAZ file

Syntax
ptCloud = readPointCloud(lasReader)
[ptCloud,ptAttributes] = readPointCloud(lasReader,"Attributes",ptAtt)
[___] = readPointCloud(___ ,Name,Value)

Description
ptCloud = readPointCloud(lasReader) reads the point cloud data from the LAS or LAZ file
indicated by the input lasFileReader object and returns it as a pointCloud object, ptCloud.

[ptCloud,ptAttributes] = readPointCloud(lasReader,"Attributes",ptAtt) reads the
specified point attributes ptAtt from a LAS or LAZ file. In addition to the point cloud, the function
returns the specified attributes of each point in the point cloud.

[___] = readPointCloud(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any of the argument combinations in previous syntaxes. For example,
"ROI",[5 10 5 10 5 10] sets the region of interest (ROI) in which the function reads the point
cloud.

Examples

Read Point Cloud Data from LAZ File

This example shows how to read and visualize point cloud data from a LAS / LAZ file.

Create a lasFileReader object for a LAZ file. Then, use the readPointCloud function to read
point cloud data from the LAZ file and generate a pointCloud object.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud.

figure
pcshow(ptCloud.Location)

2 Objects

2-292

Visualize Point Cloud Based on Classification Data from LAZ File

Segregate and visualize point cloud data based on classification data from a LAZ file.

Create a lasFileReader object to access data from the LAZ file.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Read point cloud data and associated classification point attributes from the LAZ file using the
readPointCloud function.

[ptCloud,pointAttributes] = readPointCloud(lasReader,"Attributes","Classification");

Color the points based on their classification attributes. Reshape the label image into the shape of the
point cloud.

labels = label2rgb(pointAttributes.Classification);
colorData = reshape(labels,[],3);

Visualize the color-coded point cloud.

figure
pcshow(ptCloud.Location,colorData)

 readPointCloud

2-293

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

ptAtt — Point attributes
[] (default) | character vector | string scalar | cell array of character vectors | vector of strings

Point attributes, specified as a character vector, string scalar, cell array of character vectors, or
vector of strings. The input must contain one or more of these options:

• "Classification"
• "GPSTimeStamp"
• "LaserReturn"
• "NumReturns"
• "NearIR"
• "ScanAngle"
• "UserData"
• "PointSourceID"

2 Objects

2-294

• "ScannerChannel"
• "ScanDirectionFlag"
• "EdgeOfFlightLineFlag"
• "WaveformData"

The function returns the specified attributes of each point in a lidarPointAttributes object,
ptAttributes. The unspecified attributes are returned empty.
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "ROI",[5 10 5 10 5 10] sets the region of interest (ROI) in which the function reads
the point cloud.

ROI — ROI to read in the point cloud
[-inf inf -inf inf -inf inf] (default) | six-element row vector

ROI to read in the point cloud, specified as the comma-separated pair consisting of 'ROI' and a six-
element row vector in the order, [xmin xmax ymin ymax zmin zmax]. Each element must be a real number.
The values specify the ROI boundaries in the x-, y-, and z-axis.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GpsTimeSpan — Range of GPS timestamps
lasReader.GPSTimeLimits (default) | two-element vector of duration objects

Range of GPS timestamps, specified as the comma-separated pair consisting of 'GpsTimeSpan' and
a two-element vector of duration objects, that denotes [startTime endTime]. The timestamps must
be positive.
Data Types: duration

Classification — Classification numbers of interest
lasReader.ClassificationInfo.("Classification Value") (default) | vector of valid
classification numbers

Classification numbers of interest, specified as the comma-separated pair consisting of
'Classification' and a vector of valid classification numbers.

Valid classification numbers range from 0 to 255.

Classification Number Classification Type
0 Created, never classified
1 Unclassified
2 Ground
3 Low vegetation

 readPointCloud

2-295

Classification Number Classification Type
4 Medium vegetation
5 High vegetation
6 Building
7 Low point (noise)
8 Reserved
9 Water
10 Rail
11 Road surface
12 Reserved
13 Wire guard (shield)
14 Wire conductor (phase)
15 Transmission tower
16 Wire-structure connector (insulator)
17 Bridge deck
18 High noise
19 Overhead structure
20 Ignored ground
21 Snow
22 Temporal exclusion
23- 63 Reserved
64 - 255 User-defined

These are standard class names and class-object mappings. The class definition and mapping might
differ from the standard depending on the application that created the LAS or LAZ file.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LaserReturn — Number of points segregated by their return numbers
1:lasReader.NumReturn (default) | vector of valid return numbers

Number of points segregated by their return numbers, specified as the comma-separated pair
consisting of 'LaserReturn' and a vector of valid return numbers. Valid return numbers are
integers from 1 to the value of the NumReturns property of the input lasFileReader object. For
each value, i, in the vector, the function returns a point cloud of only the points that have i as their
return number.

The return number is the number of times a laser pulse reflects back to the sensor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
ptCloud — Point cloud
pointCloud object

2 Objects

2-296

Point cloud, returned as a pointCloud object.

ptAttributes — Point attribute data
lidarPointAttributes object

Point attribute data, returned as a lidarPointAttributes object. The object contains data for the
specified attributes ptAtt of each point in the ptCloud output.

Version History
Introduced in R2020b

R2022a: Additional point attributes

You can now specify these additional point attributes to the ptAtt argument:

• "UserData"
• "PointSourceID"
• "ScannerChannel"
• "ScanDirectionFlag"
• "EdgeOfFlightLine"
• "WaveformData"

R2022a: LaserReturns renamed to LaserReturn
Behavior changed in R2022a

The LaserReturns is now called LaserReturn. To update your code, replace all instances of the
LaserReturns argument with LaserReturn.

R2022a: Point attributes returned as object
Behavior changed in R2022a

The readPointCloud function returns the ptAttributes argument as a lidarPointAttributes
object instead of as a structure.

See Also
Functions
pcread | pcshow

Objects
pointCloud | ibeoLidarReader | lasFileReader | velodyneFileReader

 readPointCloud

2-297

readCRS
Read coordinate reference system data from LAS or LAZ file

Syntax
crs = readCRS(lasReader)

Description
crs = readCRS(lasReader) reads the coordinate reference system data from the LAS or LAZ file
indicated by the input lasFileReader object lasReader.

This function requires the Mapping Toolbox.

Examples

Read CRS Data from LAZ File

Create a lasFileReader object for a LAZ file. Then, use the readCRS function to read coordinate
reference system (CRS) data from the LAZ file and generate a projcrs object.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Check if the LAZ file contains CRS data using the hasCRSData function. If it does, read the CRS data
from the LAZ file using the readCRS function.

if hasCRSData(lasReader)
 crs = readCRS(lasReader);
 disp(crs);
else
 disp("No CRS data available.");
end

 projcrs with properties:

 Name: "NAD83 / UTM zone 16N"
 GeographicCRS: [1x1 geocrs]
 ProjectionMethod: "Transverse Mercator"
 LengthUnit: "meter"
 ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

2 Objects

2-298

LAS or LAZ file reader, specified as a lasFileReader object.

Output Arguments
crs — Coordinate reference system
geocrs object | projcrs object

Coordinate reference system (CRS), returned as one of these objects:

• geocrs — Returned by a file that contains geographic CRS data.
• projcrs — Returned by a file that contains projected CRS data.

Version History
Introduced in R2022a

See Also
Functions
pcread | pcshow | readVLR | hasCRSData

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader | geocrs | projcrs

Topics
“Create, Process, and Export Digital Surface Model from Lidar Data” (Mapping Toolbox)

 readCRS

2-299

readVLR
Read variable length record from LAS or LAZ file

Syntax
vlr = readVLR(lasReader,recordID)
vlr = readVLR(lasReader,recordID,userID)

Description
vlr = readVLR(lasReader,recordID) reads the variable length record vlr from the specified
record recordID of the LAS or LAZ file reader lasReader.

vlr = readVLR(lasReader,recordID,userID) specifies the user ID of the variable length
record.

Examples

Read VLR Data from LAZ File

Create a lasFileReader object for a LAZ file. Then, use the readVLR function to read variable
length record (VLR) data from the LAZ file.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Read VLR data from the LAZ file using the readVLR function.

vlr = readVLR(lasReader,34737);

Display the VLR data.

disp(vlr)

 RecordID: 34737
 UserID: 'LASF_Projection'
 Description: 'GeoTIFF GeoAsciiParamsTag'
 RawByteData: [78 65 68 56 51 32 47 32 85 84 77 32 122 111 110 101 32 49 54 78 32 43 32 86 69 82 84 95 67 83 124 78 65 68 56 51 124 78 65 86 68 56 56 32 104 101 105 103 104 116 124]
 Data: 'NAD83 / UTM zone 16N + VERT_CS|NAD83|NAVD88 height'

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

2 Objects

2-300

recordID — Record ID
positive integer

Record ID, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

userID — User ID for VLR data
character vector | string scalar

User ID for the VLR data, specified as a character vector or string scalar. This value identifies the
user that created the VLR data.
Data Types: char | string

Output Arguments
vlr — Variable length record
structure | array of structures

Variable length record, returned as a structure or an array of structures. Each structure contains
these fields:

• RecordID — Record ID of the VLR, returned as a positive integer.
• UserID — User ID that created the VLR, returned as a string scalar.
• Description — Text description of the VLR, returned as a string scalar.
• RawByteData — Raw bytes of data stored in the VLR, returned as an integer vector. The length of

the vector is equal to the Record Length After Header value in the corresponding VLR
header.

• Data — Parsed data for standard VLR records. The value of this field depends on the contents of
the VLR corresponding to its record ID and user ID. This table lists some standard record ID and
user ID combinations.

Record ID User ID Description
0 LASF_Spec Data of the Classification Lookup

record, returned as a character vector
or string scalar.

3 LASF_Spec ASCII data of the Text Area Description
record, returned as a character vector
or string scalar.

 readVLR

2-301

Record ID User ID Description
100-354 LASF_Spec Data of the Waveform Packet

Descriptor record, returned as a
structure containing these fields:

• BitsPerSample — Number of bits
for each sample in the range 2 to 32
bits.

• CompressionType — Compression
algorithm for waveform packets.
Value 0 represents no compression.
Reserved for future use.

• NumberOfSamples — Number of
samples in decompressed waveform
packet.

• TemporalSpacing — Temporal
sample spacing in picoseconds.

• DigitizerGain — Digitizer gain to
use to convert raw digitized value to
an absolute digitizer voltage.

• DigitizerOffset — Digitizer
offset to use to convert raw digitized
value to an absolute digitizer
voltage.

2111 LASF_Projection ASCII data of the OGS Math Transform
WKT record, returned as a character
vector or string scalar.

2112 LASF_Projection ASCII data of the OGS Coordinate
System WKT record, returned as a
character vector or string scalar.

2 Objects

2-302

Record ID User ID Description
34735 LASF_Projection GeoTiff key values of the

GeoKeyDirectoryTag record, returned
as a structure containing these fields:

• KeyDirectoryVersion — Key
directory version number, returned
as 1.

• KeyRevision — Key revision
number, returned as 1.

• MinorRevision — Minor revision
number, returned as 0.

• NumberOfKeys — Number of keys,
returned as a scalar.

• KeyEntries — Structure for each
key containing these fields:

• KeyID — Key ID for each
GeoTIFF data.

• TIFFTagLocation — Location
of the data for the specified key
ID.

• Count — Number of characters
in GeoAsciiParamsTag string
value. Otherwise it returns 1.

• ValueOffset — Value depends
on the TIFFTagLocation field.

34736 LASF_Projection Data of the GeoDoubleParamsTag
record, returned as a numeric vector of
type double.

34737 LASF_Projection ASCII data of the GeoAsciiParamsTag
record, returned as a character vector
or string scalar.

Note When you specify a valid combination of record ID and user ID, the Data field is nonempty.
Otherwise, the function interprets the binary contents of the VLR and returns only RawByteData,
leaving the Data field empty.

For more information on the VLR header, or the various types of records, see the ASPRS LASER (LAS)
File Format Exchange Activities page.
Data Types: struct

Version History
Introduced in R2022a

 readVLR

2-303

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities

R2022b: Specify user ID to read VLR data

You can additionally specify the user ID along with the record ID to read VLR data from a LAS or LAZ
file.

R2022b: Returns both raw byte data and VLR data
Behavior change in future release

The output vlr structure contains both RawByteData and Data fields. Prior to R2022b, the function
returned only one of these two fields.

See Also
Functions
pcread | pcshow | readCRS

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader

2 Objects

2-304

hasCRSData
Check if LAS or LAZ file has CRS data

Syntax
flag = hasCRSData(lasReader)

Description
flag = hasCRSData(lasReader) returns a logical 1 (true) if the specified LAS or LAZ file
lasReader contains a coordinate reference system (CRS) data. Otherwise, it returns a logical 0
(false).

Examples

Check for CRS Data in LAZ File

Create a lasFileReader object for a LAZ file. Then, use the hasCRSData function to check if the
LAZ file contains CRS data to read.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Check for CRS data in the LAZ file by using the hasCRSData function.

flag = hasCRSData(lasReader);
disp(flag)

 1

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

Version History
Introduced in R2022a

See Also
Functions
readCRS | pcread | pcshow | hasGPSData | hasWaveformData | hasNearIRData

 hasCRSData

2-305

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader

2 Objects

2-306

hasGPSData
Check if LAS or LAZ file has GPS data

Syntax
flag = hasGPSData(lasReader)

Description
flag = hasGPSData(lasReader) returns a logical 1 (true) if the specified LAS or LAZ file
lasReader contains a GPS data. Otherwise, it returns a logical 0 (false).

Examples

Check for GPS Data in LAZ File

Create a lasFileReader object for a LAZ file. Then, use the hasGPSData function to check if the
LAZ file contains GPS data to read.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Check for GPS data in the LAZ file by using the hasGPSData function.

flag = hasGPSData(lasReader);
disp(flag)

 1

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

Version History
Introduced in R2022a

See Also
Functions
pcread | pcshow | hasWaveformData | hasNearIRData | hasCRSData

 hasGPSData

2-307

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader

2 Objects

2-308

hasNearIRData
Check if LAS or LAZ file has near IR data

Syntax
flag = hasNearIRData(lasReader)

Description
flag = hasNearIRData(lasReader) returns a logical 1 (true) if the specified LAS or LAZ file
lasReader contains near IR data. Otherwise, it returns a logical 0 (false).

Examples

Check for Near IR Data in LAZ File

Create a lasFileReader object for a LAZ file. Then, use the hasNearIRData function to check if
the LAZ file contains near IR data to read.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Check for near IR data in the LAZ file by using the hasNearIRData function.

flag = hasNearIRData(lasReader);
disp(flag)

 0

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

Version History
Introduced in R2022a

See Also
Functions
pcread | pcshow | hasGPSData | hasWaveformData | hasCRSData

 hasNearIRData

2-309

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader

2 Objects

2-310

hasWaveformData
Check if LAS or LAZ file has waveform data

Syntax
flag = hasWaveformData(lasReader)

Description
flag = hasWaveformData(lasReader) returns a logical 1 (true) if the specified LAS or LAZ file
lasReader contains waveform data. Otherwise, it returns a logical 0 (false).

Examples

Check for Waveform Data in LAZ File

Create a lasFileReader object for a LAZ file. Then, use the hasWaveformData function to check
the LAZ file for waveform data to read.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
lasReader = lasFileReader(path);

Check waveform data in the LAZ file by using the hasWaveformData function.

flag = hasWaveformData(lasReader);
disp(flag)

 0

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

Version History
Introduced in R2022a

See Also
Functions
pcread | pcshow | hasGPSData | hasNearIRData | hasCRSData

 hasWaveformData

2-311

Objects
pointCloud | lidarPointAttributes | ibeoLidarReader | lasFileReader |
velodyneFileReader

2 Objects

2-312

lidarScan
Create object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging) scan. The lidar
scan is a laser scan for a 2-D plane with distances (Ranges) measured from the sensor to obstacles in
the environment at specific angles (Angles). Use this laser scan object as an input to other robotics
algorithms such as matchScans, controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description

scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges and angles,
that represent the data collected from a lidar sensor. The ranges and angles inputs are vectors of
the same length and are set directly to the Ranges and Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian coordinates as an
n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS message
object.

Properties
Ranges — Range readings from lidar in meters
vector

Range readings from lidar, specified as a vector in meters. This vector is the same length as Angles,
and the vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar in radians
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length as Ranges,
and the vector elements are measured in radians. Angles are measured counter-clockwise around the
positive z-axis.
Data Types: single | double

 lidarScan

2-313

Cartesian — Cartesian coordinates of lidar readings in meters
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar coordinate frame,
positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of the Ranges
and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

2 Objects

2-314

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);
subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)

 lidarScan

2-315

title('Original Scans')
hold off
subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Lidar scans require a limited size in code generation. The lidar scans are limited to 4000 points
(range and angles) as a maximum.

2 Objects

2-316

See Also
matchScans

 lidarScan

2-317

plot
Display laser or lidar scan readings

Syntax
plot(scanObj)
plot(___ ,Name,Value)
linehandle = plot(___)

Description
plot(scanObj) plots the lidar scan readings specified in scanObj.

plot(___ ,Name,Value) provides additional options specified by one or more Name,Value pair
arguments.

linehandle = plot(___) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

2 Objects

2-318

Input Arguments
scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

 plot

2-319

Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the
maximum y-axis limits are set based on specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

Version History
Introduced in R2020b

See Also
matchScans

2 Objects

2-320

removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all Inf and NaN
values from the input scan removed. The corresponding angle readings are also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options specified by
one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 removeInvalidData

2-321

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ["RangeLimits",[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in meters. All
range readings and corresponding angles outside these range limits are removed
Data Types: single | double

2 Objects

2-322

AngleLimits — Angle limits
two-element vector

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All angles and
corresponding range readings outside these angle limits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are removed.

Version History
Introduced in R2020b

See Also
matchScans

 removeInvalidData

2-323

rangeSensor
Simulate range-bearing sensor readings

Description
The rangeSensor System object is a range-bearing sensor that is capable of outputting range and
angle measurements based on the given sensor pose and occupancy map. The range-bearing readings
are based on the obstacles in the occupancy map.

To simulate a range-bearing sensor using this object:

1 Create the rangeSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rbsensor = rangeSensor
rbsensor = rangeSensor(Name,Value)

Description

rbsensor = rangeSensor returns a rangeSensor System object, rbsensor. The sensor is
capable of outputting range and angle measurements based on the sensor pose and an occupancy
map.

rbsensor = rangeSensor(Name,Value) sets properties for the sensor using one or more name-
value pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Range — Minimum and maximum detectable range
[0 20] (default) | 1-by-2 positive real-valued vector

The minimum and maximum detectable range, specified as a 1-by-2 positive real-valued vector. Units
are in meters.

2 Objects

2-324

Example: [1 15]

Tunable: Yes
Data Types: single | double

HorizontalAngle — Minimum and maximum horizontal detection angle
[-pi pi] (default) | 1-by-2 real-valued vector

Minimum and maximum horizontal detection angle, specified as a 1-by-2 real-valued vector. Units are
in radians.
Example: [-pi/3 pi/3]
Data Types: single | double

HorizontalAngleResolution — Resolution of horizontal angle readings
0.0244 (default) | positive scalar

Resolution of horizontal angle readings, specified as a positive scalar. The resolution defines the
angular interval between two consecutive sensor readings. Units are in radians.
Example: 0.01
Data Types: single | double

RangeNoise — Standard deviation of range noise
0 (default) | positive scalar

The standard deviation of range noise, specified as a positive scalar. The range noise is modeled as a
zero-mean white noise process with the specified standard deviation. Units are in meters.
Example: 0.01

Tunable: Yes
Data Types: single | double

HorizontalAngleNoise — Standard deviation of horizontal angle noise
0 (default) | positive scalar

The standard deviation of horizontal angle noise, specified as a positive scalar. The range noise is
modeled as a zero-mean white noise process with the specified standard deviation. Units are in
radians.
Example: 0.01

Tunable: Yes
Data Types: single | double

NumReadings — Number of output readings
258 (default) | positive integer

This property is read-only.

Number of output readings for each pose of the sensor, specified as a positive integer. This property
depends on the HorizonalAngle and HorizontalAngleResolution properties.
Data Types: single | double

 rangeSensor

2-325

Usage

Syntax
[ranges,angles] = rbsensor(pose,map)

Description

[ranges,angles] = rbsensor(pose,map) returns the range and angle readings from the 2-D
pose information and the ground-truth map.

Input Arguments

pose — Pose of sensor in map
N-by-3 real-valued matrix

Poses of the sensor in the 2-D map, specified as an N-by-3 real-valued matrix, where N is the number
of poses to simulate the sensor. Each row of the matrix corresponds to a pose of the sensor in the
order of [x, y, θ]. x and y represent the position of the sensor in the map frame. The units of x and y
are in meters. θ is the heading angle of the sensor with respect to the positive x-direction of the map
frame. The units of θ are in radians.

map — Ground-truth map
occupancyMap object | binaryOccupancyMap object

Ground-truth map, specified as an occupancyMap or a binaryOccupancyMap object. For the
occupancyMap input, the range-bearing sensor considers a cell as occupied and returns a range
reading if the occupancy probability of the cell is greater than the value specified by the
OccupiedThreshold property of the occupancy map.

Output Arguments

ranges — Range readings
R-by-N real-valued matrix

Range readings, specified as an R-by-N real-valued matrix. N is the number of poses for which the
sensor is simulated, and R is the number of sensor readings per pose of the sensor. R is same as the
value of the NumReadings property.

angles — Angle readings
R-by-1 real-valued vector

Angle readings, specified as an R-by-1 real-valued vector. R is the number of sensor readings per pose
of the sensor. R is same as the value of the NumReadings property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

2 Objects

2-326

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object

Examples

Obtain Range and Bearing Readings

Create a range-bearing sensor.

rbsensor = rangeSensor;

Specify the pose of the sensor and the ground-truth map.

truePose = [0 0 pi/4];
trueMap = binaryOccupancyMap(eye(10));

Generate the sensor readings.

[ranges, angles] = rbsensor(truePose, trueMap);

Visualize the results using lidarScan.

scan = lidarScan(ranges, angles);
figure
plot(scan)

 rangeSensor

2-327

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
occupancyMap | binaryOccupancyMap | lidarScan

2 Objects

2-328

lidar.labeler.loading.CustomPointCloudSource
class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load point cloud data from custom sources into Lidar Labeler app

Description
The lidar.labeler.loading.CustomPointCloudSource class creates an interface for loading
point cloud data from a custom source into the Lidar Labeler app. This class controls the parameters
in the Select Point Cloud dialog box of the app when you set Source Type to Custom Point Cloud.

To access this dialog box, in the app, select Import > Add Point Cloud.

The lidar.labeler.loading.CustomPointCloudSource class is a handle class.

Creation
To create a CustomPointCloudSource object, write a custom reader function to read point cloud
data from the data source. Save the file to any folder on the MATLAB path. Alternatively, add the
folder containing the file to the MATLAB path. Then, use the
lidar.labeler.loading.CustomPointCloudSource function.

Syntax
customptCloudSource = lidar.labeler.loading.CustomPointCloudSource

 lidar.labeler.loading.CustomPointCloudSource class

2-329

Description

customptCloudSource = lidar.labeler.loading.CustomPointCloudSource creates a
CustomPointCloudSource object for loading a signal from custom source. To specify the data
source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Custom Point Cloud" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A custom point cloud source reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading point cloud data from a custom source
[] (default) | structure

Parameters for loading point cloud data from a custom source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-330

Field Description Required or Optional
Timestamps Timestamps for the custom

source, specified as a cell array
containing a single duration
vector of timestamps.

In the Select Point Cloud dialog
box of the app, you can import
the Timestamps parameter
from a variable in the MATLAB
workspace. The SourceParams
property stores these
timestamps in the Timestamps
field.

Optional

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.
Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.
Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.
Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

 lidar.labeler.loading.CustomPointCloudSource class

2-331

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-332

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

Version History
Introduced in R2021a

See Also
Apps
Lidar Labeler

Classes
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource | lidar.labeler.loading.RosbagSource
| lidar.labeler.loading.LasFileSequenceSource

Topics
“Use Custom Point Cloud Source Reader for Labeling”

 lidar.labeler.loading.CustomPointCloudSource class

2-333

lidarParameters
Lidar sensor parameters

Description
A lidarParameters object stores the parameters of a lidar sensor. To convert unorganized point
clouds into organized point clouds using the pcorganize function, you must specify these sensor
parameters. For more information, see “Lidar Sensor Parameters”.

Creation

Syntax
params = lidarParameters(sensorName,horizontalResolution)
params = lidarParameters(verticalResolution,verticalFoV,horizontalResolution)
params = lidarParameters(verticalBeamAngles,horizontalResolution)
params = lidarParameters(___ ,HorizontalFoV=horizontalFoV)

Description

params = lidarParameters(sensorName,horizontalResolution) returns the sensor
parameters of the specified sensor sensorName as a lidarParameters object.
horizontalResolution specifies the HorizontalResolution property. Use this syntax to load
the parameters of a supported sensor. See “Supported Sensors”.

params = lidarParameters(verticalResolution,verticalFoV,horizontalResolution)
stores parameters for a uniform beam configuration lidar sensor. The verticalResolution,
verticalFoV, and horizontalResolution arguments set the VerticalResolution,
VerticalFoV, and HorizontalResolution properties, respectively.

params = lidarParameters(verticalBeamAngles,horizontalResolution) stores
parameters for a gradient beam configuration lidar sensor. The verticalBeamAngles and
horizontalResolution arguments set the VerticalBeamAngles and HorizontalResolution
properties, respectively.

params = lidarParameters(___ ,HorizontalFoV=horizontalFoV) specifies the horizontal
field-of-view HorizontalFoV covered by the sensor in addition to any combination of input
arguments from previous syntaxes.

Input Arguments

sensorName — Name of a supported sensor
character vector | string scalar

Name of a supported sensor, specified as a character vector or string scalar. Use this argument to
load the parameters of a supported sensor. See “Supported Sensors”.

2 Objects

2-334

horizontalResolution — Number of channels in horizontal direction
positive integer

Number of channels in the horizontal direction, specified as a positive integer. Typical values include
512 and 1024.

verticalResolution — Number of channels in vertical direction
positive integer

Number of channels in the vertical direction, specified as a positive integer. Typical values include 32
and 64.

verticalFoV — Vertical field-of-view of lidar sensor
two-element vector

Vertical field-of-view of the lidar sensor, specified as a two-element vector.

verticalBeamAngles — Angular position of each vertical channel
N-element vector

Angular position of each vertical channel, specified as an N-element vector, in degrees. N is the
verticalResolution of the sensor.

Properties
HorizontalResolution — Number of channels in horizontal direction
positive integer

This property is read-only.

Number of channels in the horizontal direction, stored as a positive integer.

HorizontalFoV — Horizontal field-of-view of lidar sensor
positive scalar

This property is read-only.

Horizontal field-of-view of the lidar sensor, stored as a positive scalar, in degrees.

VerticalResolution — Number of channels in vertical direction
positive integer

Number of channels in the vertical direction, stored as a positive integer.

VerticalFoV — Vertical field-of-view of lidar sensor
two-element vector

Vertical field-of-view of the lidar sensor, stored as a two-element vector, in degrees.

HorizontalAngResolution — Horizontal angular resolution of lidar sensor
positive scalar

Horizontal angular resolution of the lidar sensor, stored as a positive scalar, in degrees.

 lidarParameters

2-335

HorizontalBeamAngles — Angular position of each horizontal channel
M-element vector

Angular position of each horizontal channel, stored as an M-element vector, in degrees. M is the
HorizontalResolution of the sensor.

VerticalBeamAngles — Angular position of each vertical channel
N-element vector

Angular position of each vertical channel, stored as an N-element vector, in degrees. N is the
VerticalResolution of the sensor.

Examples

Convert HDL-64E Unorganized Point Cloud into Organized Point Cloud

Load point cloud data into the workspace.

fileName = fullfile(toolboxdir("lidar"),"lidardata","lcc","HDL64", ...
 "pointCloud","0001.pcd");
ptCloudUnorg = pcread(fileName);

Specify the horizontal resolution of the lidar sensor.

horizontalResolution = 1024;

Create a lidarParameters object that represents an HDL64E sensor with the specified
horizontalResolution.

params = lidarParameters('HDL64E',horizontalResolution);

Convert the unorganized point cloud into an organized point cloud.

ptCloudOrg = pcorganize(ptCloudUnorg,params);

Display the dimensions of the input point cloud.

size(ptCloudUnorg.Location)

ans = 1×2

 37879 3

Display the size of the converted point cloud. pointCloud objects store organized point clouds as M-
by-N-by-3 arrays, whereas they store unorganized point clouds as M-by-3 matrices

size(ptCloudOrg.Location)

ans = 1×3

 64 1024 3

2 Objects

2-336

Create a Lidar Parameters Object

Define lidar sensor parameters.

verticalFoV = [2 -24.69];
verticalResolution = 32;
horizontalResolution = 512;

Define a lidarParmaters object.

params = lidarParameters(verticalResolution,verticalFoV,...
 horizontalResolution)

params =
 lidarParameters with properties:

 HorizontalResolution: 512
 VerticalResolution: 32
 VerticalFoV: [2 -24.6900]
 VerticalBeamAngles: [2 1.1390 0.2781 -0.5829 -1.4439 -2.3048 -3.1658 -4.0268 -4.8877 -5.7487 -6.6097 -7.4706 -8.3316 -9.1926 -10.0535 -10.9145 -11.7755 -12.6365 -13.4974 -14.3584 -15.2194 -16.0803 -16.9413 -17.8023 -18.6632 -19.5242 ...]
 HorizontalFoV: 360
 HorizontalAngResolution: 0.7045
 HorizontalBeamAngles: [0 0.7045 1.4090 2.1135 2.8180 3.5225 4.2270 4.9315 5.6360 6.3405 7.0450 7.7495 8.4540 9.1585 9.8630 10.5675 11.2720 11.9765 12.6810 13.3855 14.0900 14.7945 15.4990 16.2035 16.9080 17.6125 18.3170 19.0215 19.7260 ...]

Create Lidar Parameters Object for Gradient Lidar Sensor

Define vertical beam angles of the sensor. Refer the data handbook of the sensor to find the beam
angles. To learn more about beam configuration, see “Lidar Sensor Parameters”.

verticalBeamAngles = [15.0000 3.0000 1.5000 0.8333 0.1667 -0.5000 ...
 -1.1667 -1.8333 -2.5000 -3.1667 -3.8333 -4.5000 ...
 -5.1667 -5.8333 -9.0000 -13.0000];

Define horizontal resolution of the sensor.

horizontalResolution = 512;

Define a lidarParmaters object.

params = lidarParameters(verticalBeamAngles,horizontalResolution)

params =
 lidarParameters with properties:

 HorizontalResolution: 512
 VerticalResolution: 16
 VerticalFoV: [15 -13]
 VerticalBeamAngles: [15 3 1.5000 0.8333 0.1667 -0.5000 -1.1667 -1.8333 -2.5000 -3.1667 -3.8333 -4.5000 -5.1667 -5.8333 -9 -13]
 HorizontalFoV: 360
 HorizontalAngResolution: 0.7045
 HorizontalBeamAngles: [0 0.7045 1.4090 2.1135 2.8180 3.5225 4.2270 4.9315 5.6360 6.3405 7.0450 7.7495 8.4540 9.1585 9.8630 10.5675 11.2720 11.9765 12.6810 13.3855 14.0900 14.7945 15.4990 16.2035 16.9080 17.6125 18.3170 19.0215 19.7260 ...]

 lidarParameters

2-337

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pcorganize

Topics
“Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
“What are Organized and Unorganized Point Clouds?”

2 Objects

2-338

pointPillarsObjectDetector
PointPillars object detector

Description
The pointPillarsObjectDetector object defines a PointPillars object detector. To detect objects
in a point cloud, pass the trained PointPillars object detector to the detect object function.

If you have a pretrained PointPillars deep learning network, you can use the
pointPillarsObjectDetector function to create the pointPillarsObjectDetector object.

If you have training data, you can create an untrained pointPillarsObjectDetector object and
use the trainPointPillarsObjectDetector function to train the model.

Creation

Syntax
detector = pointPillarsObjectDetector(pcRange,class,anchorBox)
detector = pointPillarsObjectDetector(net,pcRange,class,anchorBox)
detector = pointPillarsObjectDetector(___ ,Name=Value)

Description

detector = pointPillarsObjectDetector(pcRange,class,anchorBox) creates an
untrained PointPillars object detector and sets the PointCloudRange, ClassNames, and
AnchorBoxes properties.

To train the object detector, you must specify it as an input to the
trainPointPillarsObjectDetector function.

detector = pointPillarsObjectDetector(net,pcRange,class,anchorBox) creates a
PointPillars object detector by using the specified pretrained network net. This syntax sets the
Network property in addition to the properties from the previous syntax.

detector = pointPillarsObjectDetector(___ ,Name=Value) sets the ModelName,
VoxelSize, NumPillars and NumPointsPerPillar properties by using name-value arguments in
addition to any combination of input arguments from previous syntaxes. For example,
pointPillarsObjectDetector(pcRange,class,anchorBox,ModelName="customDetector"
) creates a PointPillars object detector with the name "customDetector".

Properties
ModelName — Name of object detector
' ' (default) | character vector | string scalar

Name of the object detector, specified as a character vector or string scalar.

 pointPillarsObjectDetector

2-339

To set this property, specify it as a name-value argument at object creation. For example,
pointPillarsObjectDetector(net,pcRange,class,anchorBox,ModelName="customDetec
tor") sets the name for the object detector to "customDetector".

Network — PointPillars object detection network
dlnetwork object

This property is read-only.

PointPillars deep learning network to use for object detection, specified as a dlnetwork object. You
can set this property at object creation by using the input argument net.

PointCloudRange — Range of input point cloud
six-element real-valued vector

This property is read-only.

Range of the input point cloud, specified as a six-element vector of the form [xmin xmax ymin ymax
zmin zmax].

• xmin and xmax are the minimum and the maximum limits along the x-axis, respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis, respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis, respectively.

Set this property at object creation by using the input argument pcRange.

ClassNames — Names of object classes
categorical vector | vector of strings | cell array of character vectors

This property is read-only.

Names of the object classes, specified as a categorical vector, a vector of strings or a cell array of
character vectors. Set this property at object creation by using the input argument class.
Data Types: char | string | categorical | cell

AnchorBoxes — Anchor boxes
N-by-1 cell array

This property is read-only.

Anchor boxes, specified as an N-by-1 cell array. N is the number of object classes in the PointPillars
deep learning network. Each cell defines an anchor box as a vector of the form [length width height
center angle].

• length, width, height — represent the length, width, and height of the anchor box, respectively.
Specify each value as a positive real number, in meters.

• center — represents the center of the anchor box along z axis.
• angle — represents the orientation of the anchor box along z axis in radians, which is the yaw

angle of the lidar sensor.

Set this property at object creation by using the input argument anchorBox.
Data Types: cell

2 Objects

2-340

VoxelSize — Size of pillars
[0.16 0.16] (default) | two-element real-valued vector

This property is read-only.

Size of the pillars, specified as a two-element vector of the form [length width], representing the
length and width of the voxel in meters.

To set this property, specify it as a name-value argument at object creation. For example,
pointPillarsObjectDetector(net,pcRange,class,anchorBox,VoxelSize=[0.16 0.16])
sets the size of the voxel to [0.16 0.16].

NumPillars — Number of prominent pillars
12000 (default) | positive scalar

This property is read-only.

Number of prominent pillars, specified as a positive scalar.

To set this property, specify it as a name-value argument at object creation. For example,
pointPillarsObjectDetector(net,pcRange,class,anchorBox,NumPillars=1000) sets the
number of pillars to 1000.

NumPointsPerPillar — Minimum number of points per pillar
100 (default) | positive scalar

This property is read-only.

Minimum number of points per pillar, specified as a positive scalar.

To set this property, specify it as a name-value argument at object creation. For example,
pointPillarsObjectDetector(net,pcRange,class,anchorBox,NumPointsPerPillar=100
) sets the minimum number of points per pillar to 100.

Object Functions
detect Detect objects using PointPillars object detector

Version History
Introduced in R2021b

R2023a: Performance Improvement: Reduction in execution time

The detect object function shows a reduction in execution time. For example, this code is about 2x
times faster than in the previous release in a GPU environment.

function timingTest
% Load a pretrained PointPillars object detector
pretrainedDetector = load("pretrainedPointPillarsDetector.mat", ...
 "detector");
detector = pretrainedDetector.detector;

% Read the input point cloud

 pointPillarsObjectDetector

2-341

ptCloud= pcread('highwayScene.pcd');

% Run the detector on the point cloud
gputimeit(@() detect(detector,ptCloud))

end

The approximate execution times are:

• R2022b: 0.11 s
• R2023a: 0.05 s

The code was timed on a Linux 10, AMD® EPYC 7313 16-core processor system with NVIDIA® RTX
A5000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

For code generation,

• Only the detect method of the pointPillarsObjectDetector is supported for code
generation.

• Only the Threshold, SelectStrongest, and MiniBatchSize Name-Value pairs of the detect
method are supported.

• To create a pointPillarsObjectDetector object for code generation, see “Load Pretrained
Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation,

• Only the detect method of the pointPillarsObjectDetector is supported for code
generation.

• Only the Threshold, SelectStrongest, and MiniBatchSize Name-Value pairs of the detect
method are supported.

• To create a pointPillarsObjectDetector object for code generation, see “Load Pretrained
Networks for Code Generation” (GPU Coder).

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
trainPointPillarsObjectDetector | pcorganize | pointnetplusLayers

2 Objects

2-342

Topics
“Lidar 3-D Object Detection Using PointPillars Deep Learning”
“Code Generation For Lidar Object Detection Using PointPillars Deep Learning”
“Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
“Getting Started with PointPillars”
“Getting Started with Point Clouds Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)

 pointPillarsObjectDetector

2-343

detect
Detect objects using PointPillars object detector

Syntax
bboxes = detect(detector,ptCloud)
[bboxes,scores] = detect(detector,ptCloud)
[___ ,labels] = detect(detector,ptCloud)

detectionResults = detect(detector,DS)

[___] = detect(___ ,Name=Value)

Description
bboxes = detect(detector,ptCloud) detects objects within the input point cloud, ptCloud.
The function returns the locations of detected objects as a set of bounding boxes.

[bboxes,scores] = detect(detector,ptCloud) returns the class-specific confidence score for
each bounding box.

[___ ,labels] = detect(detector,ptCloud) returns the label assigned to each bounding box.
The labels used for object classes are defined during training by using the
trainPointPillarsObjectDetector function.

detectionResults = detect(detector,DS) detects objects within the series of point clouds in
the datastore DS.

[___] = detect(___ ,Name=Value) specifies options using one or more name-value arguments
in addition to any combination of arguments from previous syntaxes. For example,
detect(detector,ptCloud,Threshold=0.5) detects objects within the input point cloud with a
detection threshold of 0.5.

Examples

Detect Vehicles Using PointPillars Network

Load a pretrained PointPillars object detector into the workspace.

pretrainedDetector = load("pretrainedPointPillarsDetector.mat","detector");
detector = pretrainedDetector.detector;

Read the input point cloud using the pcread function.

ptCloud = pcread("PandasetLidarData.pcd");

Run the pretrained object detector on the point cloud.

[bboxes,scores,labels] = detect(detector,ptCloud);
bboxCar=bboxes(labels'=="Car",:);
bboxTruck=bboxes(labels'=="Truck",:);

2 Objects

2-344

Visualize the results using the pcshow function. For better visualization, select a region of interest,
roi, from the point cloud data. Display the bounding boxes for cars, trucks using the showShape
function.

roi = [0.0 89.12 -49.68 49.68 -5.0 5.0];
indices = findPointsInROI(ptCloud,roi);
figure
ax = pcshow(select(ptCloud,indices).Location);
zoom(ax,1.5)
showShape("cuboid",bboxCar,Color="green",Parent=ax,Opacity=0.3,LineWidth=1)
hold on;
showShape("cuboid",bboxTruck,Color="red",Parent=ax,Opacity=0.3,LineWidth=1)

Input Arguments
detector — PointPillars object detector
pointPillarsObjectDetector object

PointPillars object detector, specified as a pointPillarsObjectDetector object.

ptCloud — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object. This object must contain the locations,
intensities, and RGB colors necessary to render the point cloud.

 detect

2-345

DS — Datastore
valid datastore object

Datastore, specified as a valid datastore object, which is a collection of point clouds. This datastore
must be set up such that using the read function on the datastore object returns a cell array or table,
the first column of which contains point clouds. For more information on creating datastore objects,
see the datastore function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detect(detector,ptCloud,Threshold=0.5)

Threshold — Detection threshold
0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. The function removes detections that
have scores lower than this threshold value. To reduce false positives, increase this value.

SelectStrongest — Strongest bounding box selection
true or 1 (default) | false or 0

Strongest bounding box selection for each detected object, specified as a logical 1 (true) or 0
(false).

• true — The function returns the strongest bounding box per object. The function uses the
selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate
overlapping bounding boxes based on their confidence scores.

By default, detect uses this code for the selectStrongestBboxMulticlass function:

 selectStrongestBboxMulticlass(bbox,scores,RatioType="Union", ...
 OverlapThreshold=0.1);

• false — The function returns all the detected bounding boxes. You can then use a custom
process to eliminate overlapping bounding boxes.

MiniBatchSize — Size of mini-batch
8 (default) | positive scalar

Size of mini-batch, specified as a positive scalar. Use the MiniBatchSize argument to process a
large collection of point clouds. Using this argument, the function groups point clouds into mini-
batches and processes them as a batch to improve computational efficiency. Increase the mini-batch
size to decrease processing time. Decrease the size to use less memory.

Acceleration — Performance optimization
"auto" (default) | "none"

Performance optimization, specified as "auto" or "none".

• "auto" — Automatically selects the optimizations suitable for the network and environment of the
detector. These optimizations improve performance at the expense of some overhead on the first
call and possible additional memory usage.

2 Objects

2-346

• "none" — Disables all acceleration.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource for processing the point clouds, specified as "auto", "gpu", or "cpu".

Execution Environment Description
"auto" Use a GPU, if available. Otherwise, use the CPU. Using a GPU

requires Parallel Computing Toolbox™ and a CUDA®-enabled
NVIDIA GPU. For information about the supported
capabilities, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

"gpu" Use the GPU. If a suitable GPU is not available, the function
returns an error message.

"cpu" Use the CPU.

Data Types: char | string

Output Arguments
bboxes — Locations of objects detected
M-by-9 matrix

Locations of the objects detected within the point cloud, returned as an M-by-9 matrix. Each row in
the matrix is of the form [x y z length width height roll pitch yaw], representing the dimension and
location of the bounding box. M is the number of bounding boxes.

scores — Detection confidence scores
M element column vector

Detection confidence scores for the bounding boxes, returned as an M element column vector. M is
the number of bounding boxes. The score for each detection is the product of its objectness
prediction and classification scores. Each score is in the range [0, 1]. A higher score indicates higher
confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array. M is the number bounding boxes
in the point cloud. Define the class names used to label the objects when you train the object
detector.

detectionResults — Detection results
table

Detection results, returned as a table with columns, Boxes, Scores, and Labels. Each row of the
table corresponds to a point cloud from the input datastore.

 detect

2-347

Column Name Value Description
Boxes M-by-9 matrix, where M is the

number of bounding boxes.
Bounding boxes for objects
found in the corresponding
point cloud.

Scores M element column vector Detection scores for the
bounding boxes.

Labels M-by-1 categorical array Labels for the bounding boxes.

To evaluate the detection results, use the evaluateDetectionAOS function.

metrics = evaluateDetectionAOS(detectionResults,testLabels);

Version History
Introduced in R2021b

R2023a: Specify hardware resource to process point clouds

Specify the hardware resource to process the point clouds by using the ExecutionEnvironment
name-value argument.

R2023a: Performance Improvement: Reduction in execution time

The detect object function shows a reduction in execution time. For example, this code is about 2x
times faster than in the previous release in a GPU environment.

function timingTest
% Load a pretrained PointPillars object detector
pretrainedDetector = load("pretrainedPointPillarsDetector.mat", ...
 "detector");
detector = pretrainedDetector.detector;

% Read the input point cloud
ptCloud= pcread('highwayScene.pcd');

% Run the detector on the point cloud
gputimeit(@() detect(detector,ptCloud))

end

The approximate execution times are:

• R2022b: 0.11 s
• R2023a: 0.05 s

The code was timed on a Linux 10, AMD EPYC 7313 16-core processor system with NVIDIA RTX
A5000.

2 Objects

2-348

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For code generation, only the Threshold, SelectStrongest, and MiniBatchSize Name-Value
pairs of the detect method are supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, only the Threshold, SelectStrongest, and MiniBatchSize Name-Value
pairs of the detect method are supported.

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
trainPointPillarsObjectDetector

Objects
pointPillarsObjectDetector | yolov2ObjectDetector

Topics
“Lidar 3-D Object Detection Using PointPillars Deep Learning”
“Code Generation For Lidar Object Detection Using PointPillars Deep Learning”
“Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
“Getting Started with PointPillars”
“Getting Started with Point Clouds Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)

 detect

2-349

lidarPointAttributes
Object for storing lidar point attributes

Description
The lidarPointAttributes object stores additional point attributes that are not stored in a
pointCloud object. These attributes are associated to lidar data.

Creation
Use either lidarPointAttributes function or the readPointCloud function to create a
lidarPointAttributes object. The readPointCloud function also creates a pointCloud object.

To create a lidarPointAttributes object using readPointCloud function, see the “Read
Attributes from LAS File” on page 2-356 example.

Syntax
attr = lidarPointAttributes(Name=Value)

Description

attr = lidarPointAttributes(Name=Value) creates a lidarPointAttributes object with
properties set using one or more name-value arguments.

Properties
Count — Number of available point records in file
nonnegative integer

This property is read-only.

Number of available point records in the file, specified as a nonnegative integer.

Classification — Classification numbers
[] (default) | M-by-1 vector of nonnegative integers

Classification numbers of each point, specified as an M-by-1 vector of nonnegative integers. M is
equal to the number of available point records.

For LAS file point data record formats 0 to 5, the classification number ranges from 0 to 31.

Classification Number Classification Type
0 Created, never classified
1 Unclassified
2 Ground

2 Objects

2-350

Classification Number Classification Type
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Low point (noise)
8 Model key-point
9 Water
10 Reserved
11 Reserved
12 Overlap points
13 - 31 Reserved

For LAS file point data record formats 6 to 10, the classification number ranges from 0 to 255.

Classification Number Classification Type
0 Created, never classified
1 Unclassified
2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Low point (noise)
8 Reserved
9 Water
10 Rail
11 Road surface
12 Reserved
13 Wire guard (shield)
14 Wire conductor (phase)
15 Transmission tower
16 Wire-structure connector (insulator)
17 Bridge deck
18 High noise
19 Overhead structure
20 Ignored ground
21 Snow
22 Temporal exclusion

 lidarPointAttributes

2-351

Classification Number Classification Type
23- 63 Reserved
64 - 255 User-defined

These are standard class names and class-object mappings. The class definition and mapping might
differ depending on the application that created the LAS or LAZ file.
Example: Classification=[0 255 128]' specifies the classification numbers for three points as
0, 255, and 128.
Data Types: uint8

LaserReturn — Laser pulse return numbers
[] (default) | M-by-1 vector of positive integers

Laser pulse return numbers of each point, specified as an M-by-1 vector of positive integers. M is
equal to the number of available point records.

For LAS file point data record formats 0 to 5, the values are in the range 1 to 5, and for point data
record formats 6 to 10, the values are in the range 1 to 15.
Example: LaserReturn=[10 15 1]' specifies the laser pulse return numbers for three points as
10, 15, and 1.
Data Types: uint8

NumReturns — Total number of returns
[] (default) | M-by-1 vector of positive integers

Total number of returns for a pulse, specified as an M-by-1 vector of positive integers. M is equal to
the number of available point records.

For LAS file point data record formats 0 to 5, the values are in the range 1 to 5, and for point data
record formats 6 to 10, the values are in the range 1 to 15.
Example: NumReturns=[1 10 15]' specifies the total number of returns for three points as 1, 10,
and 15.
Data Types: uint8

GPSTimeStamp — GPS time stamps
[] (default) | M-by-1 duration vector

GPS time stamps of each point, specified as an M-by-1 duration vector in seconds. M is equal to the
number of available point records.
Example: GPSTimeStamp=seconds(1:3)' specifies the GPS time stamps for three points as 1, 2,
and 3 seconds.

NearIR — Near infrared channel value
[] (default) | M-by-1 vector of positive integers

Near infrared channel value of each point, specified as an M-by-1 vector of positive integers. M is
equal to the number of available point records. Values must be in the range [0, 65535].
Example: NearIR=ones(3,1) specifies the near infrared channel values for three points as 1.
Data Types: uint16

2 Objects

2-352

ScanAngle — Scan angle
[] (default) | M-by-1 vector

Scan angle of each point, specified as an M-by-1 vector. Each value represents the rotational angle at
which the point is captured in the laser system. The angle is negative to the left of the front of the
sensor, positive to the right, and 0 degrees directly in front. M is equal to the number of available
point records.

For LAS file point data record formats 0 to 5, the values are in the range –90 to 90, and for point data
record formats 6 to 10, the value ranges from –180 to 180.
Example: ScanAngle=[0 -180 105]' specifies the scan angles for three points as directly ahead,
180 degrees to the left, and 105 degrees to the right.
Data Types: single

PointSourceID — Point source ID
[] (default) | M-by-1 vector of nonnegative integers

Point source ID of each point, specified as an M-by-1 vector of nonnegative integers. Each element
defines the source from which a point originates. M is equal to the number of available point records.

A source is a grouping of temporally consistent data, such as a flight line for aerial systems. The
values are in the range [0, 65535].
Example: PointSourceID=[0 1 65535]' specifies the point source IDs for three points as 0, 1,
and 65535.
Data Types: uint16

ScannerChannel — Scanner channel
[] (default) | M-by-1 vector of nonnegative integers

Scanner channel of each point, specified as an M-by-1 vector of nonnegative integers. M is equal to
the number of available point records.

For single channel systems the value is 0. The values are in the range [0, 3].
Example: ScannerChannel=[0 0 0]' specifies the scanner channels for three points as 0.
Data Types: uint8

ScanDirectionFlag — Scan direction flag
[] (default) | M-by-1 logical vector

Scan direction flag of each point, specified as an M-by-1 logical vector. M is equal to the number of
available point records.

The value specifies the direction of scanner mirror motion during the capture of the corresponding
point. Left-to-right motion is defined as positive, while right-to-left motion is defined as negative. A
logical 1 (true) denotes a positive scan direction for the point, and a logical 0 (false) denotes a
negative scan direction.
Example: ScanDirectionFlag=false(3,1) specifies the scan direction flags for three points as
right-to-left.
Data Types: logical

 lidarPointAttributes

2-353

EdgeOfFlightLineFlag — Edge of flight line flag
[] (default) | M-by-1 logical vector

Edge of flight line flag of each point, specified as an M-by-1 logical vector. M is equal to the number
of available point records.

Logical 1 (true) indicates that the point lies on the edge of the flight line. Otherwise, the
corresponding element is a logical 0 (false).
Example: EdgeOfFlightLineFlag=true(3,1) specifies that three points lie on the edge of the
flight line.
Data Types: logical

ClassificationFlags — Classification flags
empty structure (default) | structure

Classification flags, specified as a structure. The structure contains these fields:

• Synthetic — An M-by-1 logical vector, where logical 1 (true) indicates that the point was
generated synthetically. Otherwise, the point is specified as logical 0 (false).

• Keypoint — An M-by-1 logical vector, where true indicates that the point is a model key-point.
Otherwise, the point is specified as false.

• Withheld — An M-by-1 logical vector, where true indicates that the point is withheld from the
processing algorithm. Otherwise, the point is specified as false.

• Overlap — An M-by-1 logical vector, where true indicates that the point lies within the overlap
region of two or more swaths. Otherwise, the point is specified as false.

Example:
ClassificationFlags=struct(Synthetic=true(3,1),Keypoint=false(3,1),Withheld=t
rue(3,1),Overlap=false(3,1)) specifies the classification flags for three points as a structure.

WaveformData — Waveform data
empty structure (default) | structure

Waveform data, specified as a structure. The waveform data is stored in point records and the
corresponding variable length records of a LAS or LAZ file. The structure contains these fields:

Field Value Description
WavePacketDescriptorI
ndex

M-by-1 vector of type double If this value is greater than
zero, then the
corresponding point has
waveform information in the
VLR record indicated by the
value of this field + 99.
When this value is zero, the
point has no waveform data.

2 Objects

2-354

Field Value Description
ByteOffsetToWaveformP
acketData

M-by-1 vector of type double Defines the location of the
waveform packet of a
particular point within the
stored waveform data. This
data is present in an
extended variable length
record (EVLR) or an
auxiliary WPD file.

WaveformPacketSize M-by-1 vector of type double Defines the size of
waveform packet in bytes.
This value is present in an
extended variable length
record (EVLR) or an
auxiliary WPD file.

ReturnPointLocation M-by-1 vector of type double Each element represents
the offset from the first
digitized value to the
location within the
waveform packet at which
the associated return pulse
was detected. These values
are represented in
picoseconds.

Xt M-by-1 vector of type double Defines the X component of
parametric line equation.
For more information, see
“Parametric line equation”
on page 2-358.

Yt M-by-1 vector of type double Defines the Y component of
parametric line equation.
For more information, see
“Parametric line equation”
on page 2-358.

Zt M-by-1 vector of type double Defines the Z component of
parametric line equation.
For more information, see
“Parametric line equation”
on page 2-358.

BitsPerSample M-by-1 vector of type double Number of bits for each
sample in the range 2 to 32
bits.

CompressionType M-by-1 vector of type double Compression algorithm for
waveform packets. Value 0
represents no compression.
Reserved for future use.

 lidarPointAttributes

2-355

Field Value Description
NumberOfSamples M-by-1 vector of type double Defines the number of

samples in decompressed
waveform packet.

TemporalSpacing M-by-1 vector of type double Defines the temporal sample
spacing in picoseconds.

DigitizerGain M-by-1 vector of type double Defines the digitizer gain to
use to convert raw digitized
value to an absolute
digitizer voltage.

DigitizerOffset M-by-1 vector of type double Defines the digitizer offset
to use to convert raw
digitized value to an
absolute digitizer voltage.

This example specifies the waveform data for three points as a structure.

WaveformData = struct(WavePacketDescriptorIndex=[2011 2200 3215]', ...
ByteOffsetToWaveformPacketData=[51 65 78]', ...
WaveformPacketSize=[12 28 25]', ...
ReturnPointLocation=[1 2 3]', ...
Xt=[1 2 3]',Yt=[3 4 5]',Zt=[5 6 7]', ...
BitsPerSample=[1 2 3]', ...
CompressionType=[1 0 1]', ...
NumberOfSamples=[10 25 32]', ...
TemporalSpacing=[11 21 31]', ...
DigitizerGain=[11 12 13]', ...
DigitizerOffset=[21 22 23]')

UserData — User data
[] (default) | M-by-1 vector of integers

User data, specified as an M-by-1 vector of integers. M is equal to the number of available point
records. This value corresponds to the user data field of the point record data in the LAS file. Use this
field at your discretion.
Example: UserData=[1 2 4]' specifies the user data for three points.

Examples

Read Attributes from LAS File

Create a lasFileReader object for a LAS file. Then, use the readPointCloud function to read
attributes from the LAS file and generate a lidarPointAttributes object.

Create a lasFileReader object to access the LAS file data.

path = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData2.las");
lasReader = lasFileReader(path);

Read all points and point attributes from the LAS file to a pointCloud object and
lidarPointAttributes object, respectively, by using the readPointCloud function.

2 Objects

2-356

[ptCloud,pointAttributes] = readPointCloud(lasReader,Attributes= ...
 ["Classification","LaserReturn","NumReturns", ...
 "EdgeOfFlightLine","ScanAngle"]);

Display the point attributes.

disp(pointAttributes)

 lidarPointAttributes with properties:

 Count: 78970
 Classification: [78970x1 uint8]
 LaserReturn: [78970x1 uint8]
 NumReturns: [78970x1 uint8]
 GPSTimeStamp: [0x0 duration]
 NearIR: []
 ScanAngle: [78970x1 single]
 PointSourceID: []
 ScannerChannel: []
 ScanDirectionFlag: []
 EdgeOfFlightLineFlag: [78970x1 logical]
 ClassificationFlags: [1x1 struct]
 WaveformData: [1x1 struct]
 UserData: []

Create lidarPointAttributes Object

Specify attributes of the lidarPointAttributes object for three points.

classificationValues=[0 255 128]';
laserReturns=[10 15 1]';
numReturns=[1 10 15]';

Create a lidarPointAttributes object.

attr=lidarPointAttributes(Classification=classificationValues, ...
 LaserReturn=laserReturns,NumReturns=numReturns);

Display the point attributes.

disp(attr)

 lidarPointAttributes with properties:

 Count: 3
 Classification: [3x1 uint8]
 LaserReturn: [3x1 uint8]
 NumReturns: [3x1 uint8]
 GPSTimeStamp: [0x0 duration]
 NearIR: []
 ScanAngle: []
 PointSourceID: []
 ScannerChannel: []
 ScanDirectionFlag: []
 EdgeOfFlightLineFlag: []
 ClassificationFlags: [1x1 struct]

 lidarPointAttributes

2-357

 WaveformData: [1x1 struct]
 UserData: []

Algorithms
The values of Xt, Yt, and Zt fields in WaveformData property define a parametric line equation for
extrapolating points along the associated waveform. The position along the wave is given by:

X = X0 + Xt
Y = Y0 + Yt
Z = Z0 + Zt

where X, Y, and Z represent the spatial position of the derived point, X0, Y0, and Z0 define the position
of the anchor point, Xt, Yt, and Zt define the position of the point at a distance of time t, in
picoseconds, relative to the anchor point. The X, Y, and Z units are identical to the units of the
coordinate system of the LAS data. If the coordinate system is geographic, the horizontal units are
decimal degrees and the vertical units are in meters.

The fields Xt, Yt, and Zt have been renamed to dx, dy, and dz in latest LAS file specification. For
more information, see the ASPRS LASER (LAS) File Format Exchange Activities page.

Version History
Introduced in R2022a

R2022b: WaveformData property has additional fields

The structure for the WaveformData property has these additional fields.

• WavePacketDescriptorIndex
• ByteOffsetToWaveformPacketData
• WaveformPacketSize

R2022b: WaveformData structure fields are updated
Behavior change in future release

The order of fields in the WaveformData structure has been updated to:

 WavePacketDescriptorIndex: []
 ByteOffsetToWaveformPacketData: []
 WaveformPacketSize: []
 ReturnPointLocation: []
 Xt: []
 Yt: []
 Zt: []
 BitsPerSample: []
 CompressionType: []
 NumberOfSamples: []
 TemporalSpacing: []
 DigitizerGain: []
 DigitizerOffset: []

2 Objects

2-358

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities

Prior to R2022b, the order was:

 Xt: []
 Yt: []
 Zt: []
 ReturnPointLocation: []
 BitsPerSample: []
 CompressionType: []
 NumberOfSamples: []
 TemporalSpacing: []
 DigitizerGain: []
 DigitizerOffset: []

See Also
Functions
pcread | pcshow | readPointCloud | writePointCloud

Objects
pointCloud | lasFileReader | lasFileWriter | ibeoLidarReader | velodyneFileReader

 lidarPointAttributes

2-359

blockedPointCloud
Point cloud made from discrete blocks

Description
A blockedPointCloud object is a point cloud made from discrete blocks. Use blocked point clouds
when a point cloud is too large to fit into memory. With a blocked point cloud, you can perform
processing without running out of memory.

Creation

Syntax
bpc = blockedPointCloud(source,blockSize)
bpcs = blockedPointCloud(sources,blockSize)
bpc = blockedPointCloud(___ ,Name=Value)

Description

bpc = blockedPointCloud(source,blockSize) creates a read-only blockedPointCloud
object from the specified source source with the specified block size blockSize. The source can be
a pointCloud object or the name of a file or folder that contains point cloud data.

bpcs = blockedPointCloud(sources,blockSize) creates an array of blockedPointCloud
objects from multiple sources sources with the specified block size blockSize. The length of bpcs
is equal to the number of sources in sources.

bpc = blockedPointCloud(___ ,Name=Value) specifies the Adapter and
AlternateFileSystemRoots properties using one or more name-value arguments.

Input Arguments

source — Source of point cloud data
pointCloud object | character vector | string scalar

Source of the point cloud data, specified as a pointCloud object, or as a character vector or string
scalar specifying the name of a file or folder.

The blockedPointCloud function supports these source formats:

• Single LAS or LAZ file.
• pointCloud object.
• Name of file or folder that contains point cloud data.

sources — Sources of point cloud data
cell array of character vectors | string array | Fileset object

2 Objects

2-360

Sources of the point cloud data, specified as a cell array of character vectors, string array, or
FileSet object. blockedPointCloud function creates an array of blockedPointCloud objects.

blockSize — Size of blocks
scalar | two-element row vector | three-element row vector

Size of the blocks, specified as a scalar, a two-element row vector, or a three-element row vector. The
value you specify determines which dimensions the function blocks the point cloud along.

• Scalar — The function blocks the point cloud along the X-axis.
• Two-element row vector — The function blocks the point cloud along the X- and Y-axes.
• Three-element row vector — The function blocks the point cloud along the X-, Y- and Z-axes.

Properties
Adapter — Read and write interface for blocked point cloud object
LAS object | InMemory object | LASBlocks object | MATBlocks object

Read and write interface for the blocked point cloud object, specified as one of these adapter objects.

Adapter Description
LAS Store blocks in a single LAS file
InMemory Store blocks in a variable in main memory
LASBlocks Stores each block as a LAS file in a folder
MATBlocks Stores each block as a MAT file in a folder

You can also create your own adapter using the lidar.blocked.Adapter class.

To set this property, you must specify it at object creation.
Example: Adapter=lidar.blocked.LAS

AlternateFileSystemRoots — Alternate file system path
string array | character vector | cell array of character vectors

Alternate file system path for the files specified in the source, specified as a string array, character
vector, or cell array of character vectors containing one or more rows. Each row specifies a set of
equivalent root paths.
Example: AlternateFileSystemRoots=["Z:\datasets", "/mynetwork/datasets"]
Data Types: char | string | cell

BlockSize — Size of blocks
scalar | two-element row vector | three-element row vector

Size of the blocks, specified as a scalar, a two-element row vector, or a three-element row vector. The
value you specify determines which dimensions the function blocks the point cloud along.

• Scalar — The function blocks the point cloud along the X-axis.
• Two-element row vector — The function blocks the point cloud along the X- and Y-axes.
• Three-element row vector — The function blocks the point cloud along the X-, Y- and Z-axes.

 blockedPointCloud

2-361

Data Types: double

SizeInBlocks — Size expressed as number of blocks
three-element row vector of positive integers

This property is read-only.

Size expressed as the number of blocks, specified as a three-element row vector of positive integers.
The element of the vector specify the number of blocks in the X-, Y- and Z-axes respectively. This
property is dependent on the BlockSize property. The value includes partial blocks.
Data Types: integer

Source — Source of point cloud data
pointCloud object | character vector | string scalar

This property is read-only.

Source of the point cloud data, specified as a pointCloud object, or as a character vector or string
scalar specifying the name of a file or folder.
Data Types: char | string

XLimits — Range of coordinates along X-axis
two-element row vector

This property is read-only.

Range of coordinates along the X-axis, specified as a two-element row vector. The first and second
elements represent the minimum and maximum values of point cloud coordinates along the X-axis,
respectively.
Data Types: double

YLimits — Range of coordinates along Y-axis
two-element row vector

This property is read-only.

Range of coordinates along the Y-axis, specified as a two-element row vector. The first and second
elements represent the minimum and maximum values of point cloud coordinates along the Y-axis,
respectively.
Data Types: double

ZLimits — Range of coordinates along Z-axis
two-element row vector

This property is read-only.

Range of coordinates along the Z-axis, specified as a two-element row vector. The first and second
elements represent the minimum and maximum values of point cloud coordinates along the Z-axis,
respectively.
Data Types: double

2 Objects

2-362

Object Functions
apply Process blocks of blocked point cloud
blocksub2roi Convert block subscripts to ROI limits
gather Collect blocks of blocked point cloud into workspace
getblock Read specific block of blocked point cloud
getRegion Read arbitrary region of blocked point cloud
roi2blocksub Convert ROI to block subscripts
write Write blocked point cloud data to new destination

Examples

Create Blocked Point Cloud

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");

bpc = blockedPointCloud(pcfile,[50 50]);

Display the details of the blocked point cloud.

disp(bpc)

 blockedPointCloud with properties:

 Read-only properties.
 Source: "B:\matlab\toolbox\lidar\lidardata\las\aerialLidarData.laz"
 Adapter: [1x1 lidar.blocked.LAS]
 SizeInBlocks: [9 6 1]
 XLimits: [4.2975e+05 4.3015e+05]
 YLimits: [3.6798e+06 3.6801e+06]
 ZLimits: [72.7900 125.8200]
 ClassUnderlying: "pointCloud"

 Settable properties
 BlockSize: [50 50 53.0300]

Version History
Introduced in R2022a

See Also
blockedPointCloudDatastore

 blockedPointCloud

2-363

apply
Process blocks of blocked point cloud

Syntax
bres = apply(bpc,fcn)
[bres1,bres2,...] = apply(bpc,fcn)
[bres1s,bres2s,...] = apply(bpcs,fcn)
[___] = apply(___ ,Name=Value)

Description
bres = apply(bpc,fcn) processes the entire blockedPointCloud object bpc by applying the
function handle fcn to each block. Returns bres, a new blocked point cloud containing the processed
data.

[bres1,bres2,...] = apply(bpc,fcn) returns multiple output arguments. The specified
function handle fcn must point to a user function that returns the same number of arguments.

[bres1s,bres2s,...] = apply(bpcs,fcn) processes the array of blocked point cloud bpcs by
applying the function handle fcn to each block of each blocked point cloud. Returns an array of
blocked point clouds containing the processed data.

[___] = apply(___ ,Name=Value) modifies aspects of block processing using name-value
arguments.

Examples

Downsample Point Cloud Data

Create a full file path for a LAZ file that contains aerial lidar data.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");

Create a pcdownsample function handle.

fun = @(block)pcdownsample(block.Data,random=0.1);

Create a blockedPointCloud object using the LAZ file.

bpc = blockedPointCloud(pcfile,[50 50]);

Process each block of the aerial point cloud data using the specified pcdownsample function handle.

pcdown = apply(bpc,fun);

2 Objects

2-364

Extract Normals from Point Cloud

Create a full file path for a LAZ file that contains aerial lidar data.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");

Create a pcnormals function handle.

fun = @(block)pcnormals(block.Data);

Create a blockedPointCloud object using the LAZ file.

bpc = blockedPointCloud(pcfile,[50 50]);

Create a MAT adapter for writing the files from the block processing operation as MAT files.

matad = lidar.blocked.MATBlocks;
outfile = fullfile(tempdir,"pcnormout");

Perform a block processing operation on the point cloud file to extract the normals.

pcnorms = apply(bpc,fun,Adapter=matad,OutputLocation=outfile);

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

bpcs — Blocked point clouds
array of blockedPointCloud objects

Blocked point clouds, specified as an array of blockedPointCloud objects.

fcn — Processing function
function handle

Processing function, specified as a function handle. For more information, see “Create Function
Handle”. The processing function fcn must accept a bstruct as input. To pass additional
arguments, specify fcn as an anonymous function. For more information, see “Anonymous
Functions”.

bstruct is a structure with these fields:

Field Description
Data Block of data from bpc
BlockSize Value of the BlockSize parameter.
ROI ROI of the block, specified as a six-element

numeric row vector in the order [xmin xmax ymin
ymax zmin zmax].

 apply

2-365

Field Description
PointAttributes Attributes for each point, specified as a

lidarPointAttributes object.
PCNumber Index into the bpc array from the current point

cloud.

The function fcn typically returns the results for one block. The results can be a pointCloud object
or a structure.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: apply(bpc,fun,DisplayWaitbar=true) displays a wait bar for operations with long
run times.

Adapter — Adapter used for writing blocked point cloud data
adapter object

Adapter used for writing blocked point cloud data, specified as an adapter object. To specify different
adapters for different outputs, use a cell array. If you specify a scalar object, the function uses the
specified adapter for every output.

This table lists the adapters included with the toolbox.

Adapter Description
LAS Store blocks in a single LAS file
InMemory Store blocks in a variable in main memory
LASBlocks Stores each block as a LAS file in a folder
MATBlocks Stores each block as a MAT file in a folder

If you do not specify the OutputLocation argument, then the default value of Adapter is
InMemory. If OutputLocation argument, then the value of Adapter is MATBlocks for non-point
cloud output and LASBlocks for point cloud output.

DisplayWaitbar — Wait bar visualization
true or 1 (default) | false or 0

Wait bar visualization, specified as a logical 1 (true) or 0 (false). When set to true, the apply
object function displays a wait bar operations with long run times. If you cancel the wait bar, the
apply object function returns partial output, if available.
Data Types: logical

OutputLocation — Location of output folder
character vector | string scalar

Location of the output folder, specified as a string scalar or character vector.

If there is a single output, the apply object function writes it directly to this location.

2 Objects

2-366

For multiple outputs, the apply object function creates subfolders of the format outputN, where N is
the sequential number of the output. If the input is an array, the apply object function derives the
output name of each element from its Source property. If the input is in-memory, the apply function
reports an error.

If the UseParallel property is true, OutputLocation must be a valid path on the client session.
Use the AlternateFileSystemRoots property of the input to specify the required mapping for
worker sessions. All outputs inherit this value.

UseParallel — Use parallel processing
false or 0 (default) | true or 1

Use parallel processing, specified as a logical 0 (false) or 1 (true). The function first determines
whether to use a new or an existing parallel pool. If no parallel pool is active, the function opens a
new pool based on the default parallel settings. All adapters specified by the Adapter property must
support parallel processing. You must specify a valid OutputLocation.

This argument requires Parallel Computing Toolbox.
Data Types: logical

Output Arguments
bres — New blocked point cloud
blockedPointCloud object

New blocked point cloud, returned as a blockedPointCloud object.

Version History
Introduced in R2022a

See Also
blockedPointCloud | selectBlockLocations

 apply

2-367

blocksub2roi
Convert block subscripts to ROI limits

Syntax
roi = blocksub2roi(bpc,blocksub)

Description
roi = blocksub2roi(bpc,blocksub) converts the subscripts of a block to the ROI limits of that
block in the blockedPointCloud object bpc.

Examples

Get ROI from Block Subscripts

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Convert the subscripts of a block to the ROI limits of that block.

roi = blocksub2roi(bpc,[2 2 1]);

Display the ROI limits of the block.

disp(roi)

 1.0e+06 *

 0.4298 0.4298 3.6799 3.6799 0.0001 0.0001

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

blocksub — Block subscripts
three-element row vector of positive integers

Block subscripts, specified as a three-element row vector of positive integers.
Example: [2 3 1]

2 Objects

2-368

Output Arguments
roi — ROI limits of the block
six-element row vector

ROI limits of the block, returned as a six-element row vector of form [xmin xmax ymin ymax zmin
zmax], defining the range of the block.

Version History
Introduced in R2022a

See Also
blockedPointCoud

 blocksub2roi

2-369

roi2blocksub
Convert ROI to block subscripts

Syntax
blocksubs = roi2blocksub(bpc,roi)

Description
blocksubs = roi2blocksub(bpc,roi) converts the specified ROI roi to the block subscripts
blocksubs of the blocks of the blocked point cloud data bpc contained within the ROI.

Examples

Get Block Subscripts from ROI

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Convert ROI limits to the block subscripts of the block contained within the ROI.

blocksubs = roi2blocksub(bpc,[429745.02 429775.02 ...
 3679830.75 3679860.75 72.79 125.82]);

Display the block subscripts.

disp(blocksubs)

 1 1 1

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

roi — ROI limits of the block
six-element row vector

ROI limits of the block, specified as a six-element row vector of form [xmin xmax ymin ymax zmin
zmax], defining the range of the block.

2 Objects

2-370

Output Arguments
blocksubs — Subscripts of blocks
K-by-3 integer-valued matrix

Subscripts of the blocks, returned as a K-by-3 integer-valued matrix. K is the number of blocks in the
specified ROI. The elements of each row correspond to the X-, Y- and Z-axes respectively.

Version History
Introduced in R2022a

See Also
blockedPointCoud

 roi2blocksub

2-371

write
Write blocked point cloud data to new destination

Syntax
write(bpc,destination)
write(bpc,destination,Name=Value)

Description
write(bpc,destination) writes the blocked point cloud data bpc to the location specified by
destination.

write(bpc,destination,Name=Value) specifies additional options for writing the blocked point
cloud data using name-value arguments.

Examples

Downsample Point Cloud Data and Write

Create a full file path for a LAZ file that contains aerial lidar data.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");

Create pcdownsample function handle.

fun = @(block)pcdownsample(block.Data,random=0.1);

Create blockedPointCloud object using the LAZ file.

bpc = blockedPointCloud(pcfile,[50 50]);

Process each block of the aerial point cloud data using the specified pcdownsample function handle.

pcdown = apply(bpc,fun);

Write the downsampled data to a specified destination.

write(pcdown,"aerial")

Create a new blockedPointCloud from the output and display its properties.

bpc2 = blockedPointCloud("aerial/aerial/");
disp(bpc2)

 blockedPointCloud with properties:

 Read-only properties.
 Source: "C:\TEMP\Bdoc23a_2213998_3568\ib570499\37\tp6eeeab43\lidar-ex50165705\aerial\aerial"
 Adapter: [1x1 lidar.blocked.LASBlocks]
 SizeInBlocks: [9 6 1]

2 Objects

2-372

 XLimits: [4.2975e+05 4.3015e+05]
 YLimits: [3.6798e+06 3.6801e+06]
 ZLimits: [79.4100 124.6200]
 ClassUnderlying: "pointCloud"

 Settable properties
 BlockSize: [50 50 53.0300]

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

destination — Location to write data
character vector | string scalar

Location to write data, specified as a character vector or string scalar. If you do not specify a full file
or folder path, this function creates a folder specified by destination in the present working
directory and writes the data in the created folder.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: write(bpc,destination,DisplayWaitbar=true) displays a wait bar for operations
with long run times.

Adapter — Adapter used for writing blocked point cloud data
adapter object

Adapter used for writing blocked point cloud data, specified as an adapter object.

This table lists the adapters included with the toolbox.

Adapter Description
LAS Store blocks in a single LAS file
LASBlocks Stores each block as a LAS file in a folder
MATBlocks Stores each block as a MAT file in a folder

DisplayWaitbar — Wait bar visualization
true or 1 (default) | false or 0

Wait bar visualization, specified as a logical 1 (true) or 0 (false). When set to true, the apply
object function displays a wait bar operations with long run times. If you cancel the wait bar, the
apply object function returns partial output, if available.
Data Types: logical

 write

2-373

Version History
Introduced in R2022a

See Also
blockedPointCoud | images.blocked.Adapter

2 Objects

2-374

getRegion
Read arbitrary region of blocked point cloud

Syntax
ptCloud = getRegion(bpc,roi)
[ptCloud,pointAttributes] = getRegion(___)

Description
ptCloud = getRegion(bpc,roi) returns all points in the blocked point cloud bpc in specified
region roi.

[ptCloud,pointAttributes] = getRegion(___) returns additional point attribute information
pointAttributes, using all input arguments from the previous syntax, if the input is a LAZ or LAS
file.

Examples

Read and Plot Sub-region of Blocked Point Cloud

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Specify a region in the point cloud and retrieve the data.

pcRegion = getRegion(bpc,[429745.02 429775.02 ...
 3679830.75 3679860.75 72.79 125.82]);

Plot the point cloud data from the specified region.

pcshow(pcRegion)

 getRegion

2-375

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

roi — ROI limits of the block
six-element row vector

ROI limits of the block, specified as a six-element row vector of form [xmin xmax ymin ymax zmin
zmax], defining the range of the block.

Output Arguments
ptCloud — Point cloud data from specified region
pointCloud object

Point cloud data from specified region, returned as a pointCloud object.

pointAttributes — Point attributes
lidarPointAttributes object

Point attributes, returned as a lidarPointAttributes object.

2 Objects

2-376

Version History
Introduced in R2022a

See Also
blockedPointCoud | getBlock

 getRegion

2-377

getBlock
Read specific block of blocked point cloud

Syntax
ptCloud = getBlock(bpc,blocksub)
[ptCloud,pointAttributes] = getBlock(___)

Description
ptCloud = getBlock(bpc,blocksub) returns the block specified by the subscript location
blocksub.

[ptCloud,pointAttributes] = getBlock(___) returns additional point attribute information
pointAttributes using the input arguments from the previous syntax, if the input is a LAZ or LAS
file.

Examples

Read Block from Blocked Point Cloud

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Display the size, in blocks, of the blocked point cloud.

disp(bpc.SizeInBlocks)

 9 6 1

Read a specific block of the point cloud.

block = getBlock(bpc,[2,2,1]);

Plot the point cloud data of the specified block.

pcshow(block)

2 Objects

2-378

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

blocksub — Block subscripts
three-element integer-valued row vector

Block subscripts, specified as a three-element integer-valued row vector. Valid values for each
element range from 1 to the value of the corresponding element in the SizeInBlocks property of
bpc.
Example: [3 2 1]

Output Arguments
ptCloud — Block of point cloud data
pointCloud object

Block of point cloud data, returned as a pointCloud object.

pointAttributes — Point attributes
lidarPointAttributes object

 getBlock

2-379

Point attributes, returned as a lidarPointAttributes object.

Version History
Introduced in R2022a

See Also
blockedPointCoud | getRegion | lidarPointAttributes

2 Objects

2-380

gather
Collect blocks of blocked point cloud into workspace

Syntax
ptCloud = gather(bpc)

Description
ptCloud = gather(bpc) collects all the blocks of the blockedPointCloud object bpc, assembles
them, and returns a single pointCloud object, ptCloud.

Examples

Collect Blocks from Blocked Point Cloud

Create a blocked point cloud from a LAZ file.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Collect the blocks of the blocked point cloud, and assemble them into a single point cloud in the
workspace.

ptCloud = gather(bpc);

Plot the assembled point cloud.

pcshow(ptCloud.Location)

 gather

2-381

Input Arguments
bpc — Blocked point cloud
blockedPointCloud object

Blocked point cloud, specified as a blockedPointCloud object.

Output Arguments
ptCloud — Assembled point cloud
pointCloud object

Assembled point cloud, returned as a pointCloud object.

Version History
Introduced in R2022a

See Also
blockedPointCoud

2 Objects

2-382

blockedPointCloudDatastore
Datastore for use with blocks from blockedPointCloud objects

Description
A blockedPointCloudDatastore object manages a collection of point cloud blocks that belong to
one or more blockedPointCloud objects.

Creation

Syntax
bpcds = blockedPointCloudDatastore(bpcs)
bpcds = blockedPointCloudDatastore(bpcs,Name=Value)

Description

bpcds = blockedPointCloudDatastore(bpcs) creates a blockedPointCloudDatastore
object that manages a collection of point cloud blocks of one or more blockedPointCloud objects,
bpcs.

The BlockSize property of the first element in bpcs is the default datastore block size.

bpcds = blockedPointCloudDatastore(bpcs,Name=Value) specifies the BlockSize,
BlockLocationSet and ReadSize properties of blockedPointCloudDatastore object by using
one or more name-value arguments.

Input Arguments

bpcs — Blocked point clouds
array of blockedPointCloud objects

Blocked point clouds, specified as an array of blockedPointCloud objects.

Properties
BlockLocationSet — Blocks to include in datastore
blockLocationSet object

Blocks to include in the datastore, specified as a blockLocationSet object. The object specifies
which blocks to include from the blocked point cloud bpcs. You can repeat or omit individual blocks.
To obtain the default value, blockedPointCloudDatastore calls the selectBlockLocations
function.

You cannot change the BlockLocationSet property after creating the
blockedPointCloudDatastore.

 blockedPointCloudDatastore

2-383

BlockSize — Block size
three-element numeric row vector

Block size, specified as a three-element numeric row vector. The elements specify the size of each
block in the X-, Y- and Z- dimensions, respectively.

The default value is the block size of the first blockedPointCloud in bpcs.

You cannot change the BlockSize property after creating the blockedPointCloudDatastore.
Example: BlockSize=[50 30 40]

PointClouds — Blocked point clouds
array of blockedPointCloud objects

Blocked point clouds that supply blocks for the blockedPointCloudDatastore, specified as an
array of blockedPointCloud objects. All elements of pointClouds must have the same number of
dimensions and be of the same type.

You cannot change the PointClouds property after creating the blockedPointCloudDatastore.

ReadSize — Number of blocks to return in each call to read function
1 (default) | positive integer

Number of blocks to return in each call to the read function, specified as a positive integer. Each call
to the read function reads at most ReadSize blocks.

TotalNumBlocks — Total number of blocks available
numeric scalar

This property is read-only.

Total number of blocks available, specified as a numeric scalar.

Object Functions
combine Combine data from multiple datastores
hasdata Returns true if more data is available in blockedPointCloudDatastore
numpartitions Number of datastore partitions
partition Partition blockedPointCloudDatastore
preview Preview subset of data in datastore
read Read data and metadata from blockedPointCloudDatastore
readall Read all data from blockedPointCloudDatastore
reset Reset datastore to initial state
shuffle Shuffle data in datastore
subset Create subset of datastore or FileSet
transform Transform datastore

Examples

Create Point Cloud Datastore

Create a blocked point cloud from a LAZ file, specifying the block size.

2 Objects

2-384

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[50 50]);

Create a blocked point cloud datastore that contains the blocked point cloud.

bpcds = blockedPointCloudDatastore(bpc);

Read four blocks from the datastore.

bpcds.ReadSize = 4;
blocks = read(bpcds);

Display the details of the four blocks.

disp(blocks)

 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}

Create blockedPointCloudDatastore from Multiple Files

Create a FileSet object containing multiple LAS files.

fs = matlab.io.datastore.FileSet(...
 fullfile(toolboxdir("lidar"),"lidardata", ...
 "las"),"FileExtensions",".las");

Create an array of blockedPointCloud objects from the file set, and specify an adapter. Specifying
an adapter means the blockedPointCloud function does not have to inspect each file to pick a
suitable adapter.

readAdapter = lidar.blocked.LAS();
bpcs = blockedPointCloud(fs,[100 100],Adapter=readAdapter);

Create a blocked point cloud datastore from the blockedPointCloud array.

bpcds = blockedPointCloudDatastore(bpcs);

Read all data from the blockedPointCloudDatastore.

blocks = readall(bpcds);

Version History
Introduced in R2022a

See Also
blockedPointCloud | blockLocationSet | selectBlockLocations

 blockedPointCloudDatastore

2-385

read
Read data and metadata from blockedPointCloudDatastore

Syntax
b = read(bpcds)
[b,info] = read(bpcds)

Description
b = read(bpcds) returns the data extracted from the blockedPointCloudDatastore object
bpcds.

[b,info] = read(bpcds) also returns info, a structure containing information about where in
the blockedPointCloudDatastore the data is extracted from.

Examples

Read Data and Metadata from blockedPointCloudDatastore

Create a blocked point cloud.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[300 300]);

Create a blockedPointCloudDatastore from the blocked point cloud.

bpcds = blockedPointCloudDatastore(bpc);

Read data and metadata from the blockedPointCloudDatastore. Display the metadata.

while hasdata(bpcds)
 [data,info] = read(bpcds);
 disp(info)
end

 ROI: [4.2975e+05 4.3005e+05 3.6798e+06 3.6801e+06 72.7900 125.8200]
 PCNumber: 1
 PointAttributes: [1x1 lidarPointAttributes]
 BlockSize: [300 300 53.0300]

 ROI: [4.3005e+05 4.3035e+05 3.6798e+06 3.6801e+06 72.7900 125.8200]
 PCNumber: 1
 PointAttributes: [1x1 lidarPointAttributes]
 BlockSize: [300 300 53.0300]

2 Objects

2-386

Input Arguments
bpcds — Blocked point cloud datastore
blockedPointCloudDatastore object

Blocked point cloud datastore, specified as a blockedPointCloudDatastore object.

Output Arguments
b — Data from blockedPointCloudDatastore
cell array

Data from the blockedPointCloudDatastore, returned as a cell array of block data. The length of
the cell array is equal to the value of the ReadSize property of the blockedPointCloudDatastore
object.

info — Metadata from blockedPointCloudDatastore
structure

Metadata from the blockedPointCloudDatastore, returned as a structure with these fields. If the
value of the ReadSize property of the blockedPointCloudDatastore object is greater than 1,
these fields are arrays.

Field Description
ROI ROI of the block, specified as a six-element

numeric row vector in the order [xmin xmax ymin
ymax zmin zmax].

PCNumber Index into the bpcds.PointClouds array
corresponding to the blockedPointCloud from
which this block is read.

PointAttributes Attributes for each point, specified as a
lidarPointAttributes object.

BlockSize Value of the BlockSize parameter.

Version History
Introduced in R2022a

See Also
blockedPointCloud | blockedPointCloudDatastore

 read

2-387

readall
Read all data from blockedPointCloudDatastore

Syntax
b = readall(bpcds)

Description
b = readall(bpcds) read all the data from the blockedPointCloudDatastore object bpcds.

Examples

Read All Blocks from blockedPointCloudDatastore

Create a blocked point cloud.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[200 200]);

Create a blockedPointCloudDatastore from the blocked point cloud.

bpcds = blockedPointCloudDatastore(bpc);

Read all the blocks from the blockedPointCloudDatastore. The readall object function returns
a cell array containing the six blocks.

b = readall(bpcds)

b=6×1 cell array
 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}
 {1x1 pointCloud}

Input Arguments
bpcds — Blocked point cloud datastore
blockedPointCloudDatastore object

Blocked point cloud datastore, specified as a blockedPointCloudDatastore object.

2 Objects

2-388

Output Arguments
b — Data from blockedPointCloudDatastore
cell array

Data from the blockedPointCloudDatastore, returned as a cell array of block data. The length of
the cell array is equal to the value of the ReadSize property of the blockedPointCloudDatastore
object. Each element of b contains the data for a single block of bpcds. The readall function
returns the data from each individual read operation such that the data can be concatenated
vertically.

The data type of this output is the same as the data type of the output of the read function.

Version History
Introduced in R2022a

See Also
blockedPointCloud | blockedPointCloudDatastore

 readall

2-389

hasdata
Returns true if more data is available in blockedPointCloudDatastore

Syntax
tf = hasdata(bpcds)

Description
tf = hasdata(bpcds) returns a logical scalar, true or false, indicating the availability of data in
the blockedPointCloudDatastore object bpcds. Use hasdata in conjunction with the read
function to read all the data within the datastore. Call hasdata before calling read.

Examples

Read Until All Data in blockedPointCloudDatastore Has Been Read

Create a blocked point cloud.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[300 300]);

Create a blockedPointCloudDatastore from the blocked point cloud.

bpcds = blockedPointCloudDatastore(bpc);

Read data and metadata from the blockedPointCloudDatastore. Display the metadata.

while hasdata(bpcds)
 [data,info] = read(bpcds);
 disp(info)
end

 ROI: [4.2975e+05 4.3005e+05 3.6798e+06 3.6801e+06 72.7900 125.8200]
 PCNumber: 1
 PointAttributes: [1x1 lidarPointAttributes]
 BlockSize: [300 300 53.0300]

 ROI: [4.3005e+05 4.3035e+05 3.6798e+06 3.6801e+06 72.7900 125.8200]
 PCNumber: 1
 PointAttributes: [1x1 lidarPointAttributes]
 BlockSize: [300 300 53.0300]

Input Arguments
bpcds — Blocked point cloud datastore
blockedPointCloudDatastore object

Blocked point cloud datastore, specified as a blockedPointCloudDatastore object.

2 Objects

2-390

Output Arguments
tf — Data availability
true or 1 | false or 0

Data availability, returned as a logical 1 (true) or 0 (false).

Version History
Introduced in R2022a

See Also
blockedPointCloudDatastore

 hasdata

2-391

partition
Partition blockedPointCloudDatastore

Syntax
subbpcds = partition(bpcds,n,index)

Description
subbpcds = partition(bpcds,n,index) partitions the blocked point cloud datastore bpcds into
the specified number of parts n, and returns the partition corresponding to the specified index
index.

Examples

Partition blockedPointCloudDatastore and Read First Partition

Create a blocked point cloud.

pcfile = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData.laz");
bpc = blockedPointCloud(pcfile,[300 300]);

Create a blockedPointCloudDatastore from the blocked point cloud.

bpcds = blockedPointCloudDatastore(bpc);

Partition the blocked point cloud datastore into two partitions, and create a new
blockedPointCloudDatastore object from the data in the first partition.

bpcdsp1 = partition(bpcds,2,1);

Read data and metadata from the first partition. Display the metadata.

while hasdata(bpcdsp1)
 [data,info] = read(bpcdsp1);
 disp(info)
end

 ROI: [4.2975e+05 4.3005e+05 3.6798e+06 3.6801e+06 72.7900 125.8200]
 PCNumber: 1
 PointAttributes: [1x1 lidarPointAttributes]
 BlockSize: [300 300 53.0300]

Input Arguments
bpcds — Blocked point cloud datastore
blockedPointCloudDatastore object

Blocked point cloud datastore, specified as a blockedPointCloudDatastore object.

2 Objects

2-392

n — Number of partitions
numeric scalar

Number of partitions, specified as a numeric scalar. To estimate a reasonable value for N, use the
numpartitions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

index — Partition to read
numeric scalar

Partition to read, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
subbpcds — Partitioned subset of datastore
blockedPointCloudDatastore object

Partitioned subset of the datastore, returned as a blockedPointCloudDatastore object.

Version History
Introduced in R2022a

See Also
blockedPointCloud | blockedPointCloudDatastore

 partition

2-393

lidar.blocked.Adapter class
Package: lidar.blocked

Adapter interface for blockedPointCloud objects

Description
The lidar.blocked.Adapter class specifies the interface for block-based reading and writing of
data. Classes that inherit from this interface can be used with blockedPointCloud objects,
enabling block-based stream processing of data.

To implement this class, you must:

1 Inherit from the lidar.blocked.Adapter class. Your class definition must have this format,
where MyAdapter is the name of your custom adapter class.

classdef MyAdapter < lidar.blocked.Adapter
 ...
end

2 Define the three required methods for reading point cloud data from disk: openToRead,
getInfo, and getRegion.

3 Optionally, define methods that enable additional reading and writing capabilities.
4 Optionally, for single-file destinations, define an Extension property that specifies the file

extension to use when automatically creating a destination location. The property value must be
a string, such as "las". For adapters that store data in a folder, do not add this property, or
specify the value of the property as empty ([]).

The lidar.blocked.Adapter class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Methods
Public Methods

Capability Methods to Implement
Read data (Required) openToRead — Open source for reading

getInfo — Gather information about the source

getRegion — Get specified region
Write data (Optional) openToWrite — Create and open destination for writing

setRegion — Set specified region

2 Objects

2-394

Capability Methods to Implement
Perform clean up tasks (Optional) close — Perform clean up tasks such as closing file handles
Enable parallel block processing
(Optional)

openInParallelToAppend — Use the adapter in parallel mode
with the apply object function

Tips
The toolbox includes several built-in adapters that subclass from the Adapter class. All these
adapters support both read and write operations.

Adapter Description
LAS Store blocks in a single LAS file
InMemory Store blocks in a variable in main memory
LASBlocks Stores each block as a LAS file in a folder
MATBlocks Stores each block as a MAT file in a folder

Version History
Introduced in R2022a

See Also
blockedPointCloud

 lidar.blocked.Adapter class

2-395

lidar.blocked.InMemory
Read and write blocked point cloud data as workspace variable

Description
The InMemory object is an adapter that reads and writes single-resolution blocked point cloud data
as a variable in the workspace.

The table lists the support that the InMemory object has for various blockedPointCloud
capabilities.

Capability Support
Data types struct and pointCloud object
Process blocks in parallel using the apply
function

No

Creation

Syntax
adapter = lidar.blocked.InMemory

Description

adapter = lidar.blocked.InMemory creates an InMemory object that reads and writes blocked
point cloud data to a variable in the workspace.

Version History
Introduced in R2022a

See Also
blockedPointCloud | LASBlocks | MATBlocks | LAS

2 Objects

2-396

lidar.blocked.LAS
Read and write blocked point cloud data as single LAS file

Description
The LAS object is an adapter that reads and writes a point cloud as a single block in a single LAS file.

The table lists the support that the LAS object has for various blockedPointCloud capabilities.

Capability Support
Data types struct and pointCloud object
Process blocks in parallel using the apply
function

No

Creation

Syntax
adapter = lidar.blocked.LAS

Description

adapter = lidar.blocked.LAS creates a LAS object that reads and writes blocked point cloud
data as a single block in a single LAS file.

Properties
Extension — Preferred file extension
"las" (default) | "laz"

Preferred file extension, specified as "las" or "laz".
Data Types: char | string

LasVersion — LAS version
"1.2" (default) | "1.0" | "1.1" | "1.3" | "1.4"

LAS version, specified as "1.0", "1.1", "1.2", "1.3", or "1.4".
Data Types: string | char

Version History
Introduced in R2022a

 lidar.blocked.LAS

2-397

See Also
blockedPointCloud | InMemory | LASBlocks | MATBlocks

2 Objects

2-398

lidar.blocked.LASBlocks
Read and write each block of blocked point cloud data as LAS file

Description
The LASBlocks object is an adapter that writes blocked point cloud data in LAS format.

When writing to disk, the object creates an individual LAS file for each block and saves the point
cloud files in a folder. The object also creates and saves a MAT file with information about the blocked
point cloud.

The table lists the support that the LASBlocks object has for various blockedPointCloud
capabilities.

Capability Support
Data types struct and pointCloud object
Process blocks in parallel using the apply
function

Yes

Creation

Syntax
adapter = lidar.blocked.LASBlocks

Description

adapter = lidar.blocked.LASBlocks creates a LASBlocks object that reads and writes
blocked point cloud data as LAS files, with one LAS file for each block.

Properties
BlockFormat — Point cloud file format
"las" (default) | "laz"

Point cloud file format, specified as "las" or "laz".
Data Types: char | string

LasVersion — LAS version
"1.2" (default) | "1.0" | "1.1" | "1.3" | "1.4"

LAS version, specified as "1.0", "1.1", "1.2", "1.3", or "1.4".
Data Types: string | char

 lidar.blocked.LASBlocks

2-399

Version History
Introduced in R2022a

See Also
blockedPointCloud | MATBlocks | InMemory | LAS

2 Objects

2-400

lidar.blocked.MATBlocks
Read and write blocks of blocked point cloud data as MAT files

Description
The MATBlocks object is an adapter that reads and writes blocked point cloud data as MAT files, with
one MAT file for each block.

The object saves the point cloud data files in a folder.

The table lists the support that the MATBlocks object has for various blockedPointCloud
capabilities.

Capability Support
Data types struct and pointCloud object
Process blocks in parallel using the apply
function

Yes

Creation

Syntax
adapter = lidar.blocked.MATBlocks

Description

adapter = lidar.blocked.MATBlocks creates a MATBlocks object that reads and writes
blocked point cloud data as MAT files, with one MAT file for each block.

Version History
Introduced in R2022a

See Also
blockedPointCloud | LAS | InMemory | LASBlocks

 lidar.blocked.MATBlocks

2-401

close
Class: lidar.blocked.Adapter
Package: lidar.blocked

Close adapter

Syntax
close(obj)

Description
close(obj) closes and releases resources acquired from using the openToRead, openToWrite,
and openInParallelToAppend methods. Use this method to flush data, close file handles, and
perform other clean up actions.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter

2 Objects

2-402

getInfo
Class: lidar.blocked.Adapter
Package: lidar.blocked

Gather information about source

Syntax
info = getInfo(obj)

Description
info = getInfo(obj) gathers and returns info, a structure containing information about the
source.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

Output Arguments
info — Information about source
structure

Information about the source, returned as a structure with additional metadata of the input point
cloud. The structure contains these fields:

• Size — Size of the point cloud, returned as a three-element numeric vector.
• Datatype — Data type of the point cloud, returned as a pointCloud object or structure.
• BlockSize — Block size of the point cloud, returned as a three-element numeric vector.
• MinLimits — Minimum coordinate limits, returned as a three-element numeric vector of the form

[xmin ymin zmin].
• MaxLimits — Maximum coordinate limits, returned as a three-element numeric vector of the

form [xmax ymax zmax].

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter

 getInfo

2-403

getRegion
Class: lidar.blocked.Adapter
Package: lidar.blocked

Read arbitrary region of blocked point cloud

Syntax
[ptCloud,pointAttributes] = getRegion(obj,roi)

Description
[ptCloud,pointAttributes] = getRegion(obj,roi) returns all points of the point cloud
ptCloud in the region specified by roi. The method also returns additional point attribute
information, pointAttributes, if the input is a LAZ or LAS file.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

roi — ROI limits of block
six-element row vector

ROI limits of the block, specified as a six-element row vector in the order [xmin xmax ymin ymax zmin
zmax], defining the range of the block.

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

pointAttributes — Point attributes
lidarPointAttributes object

Point attributes, returned as a lidarPointAttributes object.

Version History
Introduced in R2022a

2 Objects

2-404

See Also
lidar.blocked.Adapter | setRegion | lidarPointAttributes | pointCloud

 getRegion

2-405

openInParallelToAppend
Class: lidar.blocked.Adapter
Package: lidar.blocked

Open destination on parallel worker to append blocks

Syntax
openInParallelToAppend(obj,destination)

Description
openInParallelToAppend(obj,destination) opens the location specified by destination on
a parallel worker in preparation for appending blocks.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

destination — Location
string scalar | character vector

Location, specified as a string scalar or character vector.
Data Types: char | string

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter

2 Objects

2-406

openToRead
Class: lidar.blocked.Adapter
Package: lidar.blocked

Open source for read access

Syntax
openToRead(obj,source)

Description
openToRead(obj,source) opens the specified location on disk source for read access. This
method issues an error if the adapter does not support source.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

source — Location to read from
string scalar | character vector

Location to read from, specified as a string scalar or character vector.
Data Types: char | string

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter | openToWrite

 openToRead

2-407

openToWrite
Class: lidar.blocked.Adapter
Package: lidar.blocked

Create and open destination for writing

Syntax
openToWrite(obj,destination,info)

Description
openToWrite(obj,destination,info) opens the location specified by the destination for
writing.

Use this method to prepare the destination for writing. For example, open a file handle, create a
destination folder, or write a file header or metadata to the destination.

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

destination — Location to write to
string scalar | character vector

Location to write to, specified as a string scalar or character vector.
Data Types: char | string

info — Information about source
structure

Information about the source, specified as a structure that contains additional metadata of the input
point cloud. The structure can be empty.

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter | openToRead

2 Objects

2-408

setRegion
Class: lidar.blocked.Adapter
Package: lidar.blocked

Write specified region of blocked point cloud

Syntax
setRegion(obj,roi,data,info)

Description
setRegion(obj,roi,data,info) writes the data of a pointCloud object to the specified roi.
You must specify additional information, info, to set the region, and to get information related to the
point cloud. If no additional information is necessary, you must specify an empty array ([]).

Input Arguments
obj — Adapter object
lidar.blocked.Adapter object

Adapter object, specified as an instance of an adapter class that is subclassed from the
lidar.blocked.Adapter class.

roi — ROI limits of block
six-element row vector

ROI limits of the block, specified as a six-element row vector in the order [xmin xmax ymin ymax zmin
zmax], defining the range of the block.

data — Point cloud data
pointCloud object

Point cloud data, specified as a pointCloud object.

info — Information about source
array

Information about the source, specified as an array containing additional metadata of the input point
cloud. It can also contain information necessary to set the region. If no additional information is
necessary, you must specify it as an empty array.

Version History
Introduced in R2022a

See Also
lidar.blocked.Adapter | getRegion | lidarPointAttributes | pointCloud

 setRegion

2-409

lidar.labeler.AutomationAlgorithm class
Package: lidar.labeler

Interface for algorithm automation in ground truth labeling

Description
The lidar.labeler.AutomationAlgorithm class specifies the interface for defining custom
automation algorithms to run in the Lidar Labeler app. Classes that inherit from the
AutomationAlgorithm interface can be used with the automation workflow of the Lidar Labeler
app to generate ground truth labels.

The lidar.labeler.AutomationAlgorithm class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
The AutomationAlgorithm class predefines this set of properties.

GroundTruth — Ground truth data
groundTruthLidar object

Ground truth data, specified as a groundTruthLidar. This property holds all the labels in the Lidar
Labeler app prior to automation.

Attributes:

GetAccess public
SetAccess private

SelectedLabelDefinitions — Selected label definitions
structure

Label definitions selected for automation in the app, specified as a structure. The app support
selection of only one labeling definition per automation session. In the app, the selected label
definition is highlighted in yellow in either the ROI Labels or Scene Labels pane on the left.

The structure contains these fields.

2 Objects

2-410

Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

lidarLabelType object contains the label type for voxel labeled ROI. You define
the label using lidarLabelType.Voxel.

Name Character vector that contains the name of the label definition.
Attributes
(optional)

Structure array that contains one structure for each attribute in the label
definition. If the label definition does not contain attributes, then this property
does not include the Attributes field.

The first field of each attribute structure in this structure array contains the
attribute name. The second field contains a structure of values that are associated
with that name. If you are defining a List attribute, you must also define the list
of values for that attribute. Values for Numeric Value, String, or Logical
attributes are optional. Descriptions for the attributes are optional for all cases.

VoxelLabelID
(optional)

Positive integer that contains the voxel label ID for the label definition. This
VoxelLabelID field applies only for label definitions of type
lidarLabelType.Voxel.

To view a sample SelectedLabelDefinitions structure that contains an attribute, enter this code
at the MATLAB command prompt.

selectedLabelDefs.Type = labelType.Cuboid;
selectedLabelDefs.Name = 'Car';
selectedLabelDefs.Attributes = struct('distance', ...
 struct('DefaultValue',0,'Description','Sensor distance'))

To view a sample SelectedLabelDefinitions structure that contains voxel label definitions, enter
this code at the MATLAB command prompt.

selectedLabelDefs.Type = lidarLabelType.Voxel;
selectedLabelDefs.Name = 'Tree';
selectedLabelDefs.Attributes = struct('distance', ...
 struct('DefaultValue',0,'Description','Sensor distance'))

Attributes:

GetAccess public
SetAccess private

ValidLabelDefinitions — Valid label definitions
structure array

Valid label definitions that the algorithm can automate, specified as a structure array. Each structure
in the array corresponds to a valid label definition. To determine which label definitions are valid, the
app uses the checkLabelDefinition method. This table describes the fields for each valid label
definition structure.

 lidar.labeler.AutomationAlgorithm class

2-411

Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

lidarLabelType object contains the label type for voxel labeled ROI. You define
the label using lidarLabelType.Voxel.

Name Character vector that contains the name of the label definition.
Attributes
(optional)

Structure array that contains one structure for each attribute in the label
definition. If the label definition does not contain attributes, then this property
does not include the Attributes field.

The first field of each attribute structure in this structure array contains the
attribute name. The second field contains a structure of values that are associated
with that name. If you are defining a List attribute, you must also define the list
of values for that attribute. Values for Numeric Value, String, or Logical
attributes are optional. Descriptions for the attributes are optional for all cases.

VoxelLabelID
(optional)

Positive integer that contains the voxel label ID for the label definition. This
VoxelLabelID field applies only for label definitions of type
lidarLabelType.Voxel.

To view a sample ValidLabelDefinitions structure that contains an attribute, enter this code at
the MATLAB command prompt.

validLabelDefs(1).Type = labelType.Cuboid;
validLabelDefs(1).Name = 'Car';
validLabelDefs(2).Type = labelType.Line;
validLabelDefs(2).Name = 'LaneMarker';
validLabelDefs(3).Type = lidarLabelType.Voxel;
validLabelDefs(3).Name = 'Tree';

Attributes:

GetAccess public
SetAccess private

Clients of the AutomationAlgorithm class are required to define this set of properties. These
properties set up the name, description, and user instructions for your automated algorithm.

Name — Automation algorithm name
character vector

Automation algorithm name, specified as a character vector.

2 Objects

2-412

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Description — Automation algorithm description
character vector

Algorithm description, specified as a character vector.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

UserDirections — Algorithm directions displayed in app
cell array

Algorithm directions displayed in app, specified as a cell array. UserDirections are specified as a
cellstr, with each string representing a separate direction. Use the checkSetup method to verify
that the directions have been adhered to.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Methods
Public Methods

Clients of an AutomationAlgorithm implement these user-defined functions to define execution of
the algorithm. For more information on creating your own automation algorithm, see “Create
Automation Algorithm for Labeling”.
checkLabelDefinition Validate label definition
checkSignalType Validate signal type
checkSetup Set up validation (optional)
initialize Initialize state for algorithm execution (optional)
run Run label automation on every frame in interval
terminate Terminate automated algorithm (optional)
settingsDialog Display algorithm settings (optional)

Version History
Introduced in R2022a

 lidar.labeler.AutomationAlgorithm class

2-413

See Also
Apps
Lidar Labeler | Image Labeler | Ground Truth Labeler | Video Labeler

Functions
groundTruthLidar | labelType | lidarLabelType | lidar.labeler.mixin.Temporal

Topics
“Create Automation Algorithm for Labeling”
“Temporal Automation Algorithms”
“Automate Ground Truth Labeling For Vehicle Detection Using PointPillars”
“Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler”
“Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

2 Objects

2-414

checkLabelDefinition
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Validate label definition

Syntax
isValid = checkLabelDefinition(algObj,labelDef)

Description
In the Lidar Labeler app, the checkLabelDefinition method checks whether each label defined
in the ROI Labels and Scene Labels panes is valid. The method restricts an automation algorithm to
use only relevant labels. For example, a label definition of type Cuboid cannot be used to mark a lane
boundary.

Clients of AutomationAlgorithm must implement this method.

isValid = checkLabelDefinition(algObj,labelDef) returns true for valid label definitions
and false for invalid definitions for the automation algorithm provided by algObj. labelDef is a
structure containing all the label definitions in the ROI Labels and Scene Labels panes. Definitions
that return false are disabled during automation.

Examples

Restrict Automation to ROI Labels of Any Type

This implementation of the checkLabelDefinition method designates ROI labels such as Cuboid
and Line as valid and all other labels as invalid.

function isValid = checkLabelDefinition(algObj,labelDef)
 isValid = isROI(labelDef.Type);
end

Restrict Automation to Cuboid Labels of Any Type

This implementation of the checkLabelDefinition method designates Cuboid labels as valid and
all other labels as invalid.

function isValid = checkLabelDefinition(algObj,labelDef)
 isValid = (labelDef.Type == labelType.Cuboid);
end

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

 checkLabelDefinition

2-415

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

labelDef — Label definition
structure

Label definition, specified as a structure containing Type and Name fields.

Field Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

lidarLabelType object contains the label type for voxel labeled ROI. You
define the label using lidarLabelType.Voxel.

Name Character vector that contains the name of the label definition.

To view a sample labelDef structure that contains a cuboid label definition, enter this code at the
MATLAB command prompt.

labelDef(1).Type = labelType.Cuboid;
labelDef(1).Name = 'Car';

Output Arguments
isValid — True of false result of label definition validity check
1 | 0

True or false result of the label definition validity check, returned as a 1 or 0 of data type logical.

Tips
• To access the selected label definitions, use the SelectedLabelDefinitions property of the

automation algorithm. In the Lidar Labeler app, the selected label definitions are highlighted in
yellow in the ROI Labels and Scene Labels panes on the left.

Version History
Introduced in R2022a

See Also
labelType | lidarLabelType | lidar.labeler.AutomationAlgorithm | checkSignalType |
checkSetup

2 Objects

2-416

checkSetup
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Set up validation (optional)

Syntax
isReady = checkSetup(algObj)
isReady = checkSetup(algObj,labelsToAutomate)

Description
In the Lidar Labeler app, the checkSetup method checks the validity of the setup when you click
Run in an automation session. If checkSetup returns true, then the setup is valid and the app
proceeds to run the automation algorithm by using the initialize, run, and terminate methods.

Clients of AutomationAlgorithm can optionally implement this method.

isReady = checkSetup(algObj) returns true if you completed set up correctly and the
automation algorithm algObj can begin execution. Otherwise, checkSetup returns false.

isReady = checkSetup(algObj,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling.
This syntax is available only for time-dependent (temporal) automation algorithms.

Examples

Check Setup for ROI Labels

This implementation of the checkSetup method checks the setup for a temporal automation
algorithm. This method determines that an automation algorithm is ready to run if at least one ROI
label exists.

function isReady = checkSetup(algObj,labelsToAutomate)

 notEmpty = ~isempty(labelsToAutomate);
 hasROILabels = any(labelsToAutomate.Type == labelType.Cuboid ...
 | labelsToAutomate.Type == labelType.Line ...
 | labelsToAutomate.Type == lidarLabelType.Voxel);
 isReady = (notEmpty && hasROILabels)

end

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

 checkSetup

2-417

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

labelsToAutomate — Labels selected for automation
table

Labels selected for automation, specified as a table with these columns.

Column Name Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

lidarLabelType.Voxel is not supported.
Name Character vector that contains the name of the label.
Time Scalar of type double that specifies the time, in seconds, when the label was

marked.

2 Objects

2-418

Column Name Description
Position Location of the label in the frame. The format of this vector depends on the

label type.

Label Type Position Format
Cuboid —
Cuboid ROI
labels

M-by-9 numeric vector of the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid

along the x-axis, y-axis, and z-axis, respectively.
• xrot, yrot, and zrot specify the rotation angles for the

cuboid along the x-axis, y-axis, and z-axis, respectively.
These angles are clockwise-positive when looking in the
forward direction of their corresponding axes.

This figure shows how these values specify the position of a
cuboid.

Line —
Polyline ROI
labels

M-by-1 vector of cell arrays, where M is the number of labels in
the frame. Each cell array contains an N-by-2 numeric matrix

 checkSetup

2-419

Column Name Description
Label Type Position Format

of the form [x1 y1; x2 y2; ... ; xN yN] for N points in
the polyline.

Scene —
Scene labels

Logical value of 1 if the label is present in the frame and 0
otherwise.

Each row of the table corresponds to a label selected for automation. This labelsToAutomate table
contains a line label with five points, and a cuboid label.

 Type Name Time Position
 _________ ____________ _________ ____________

 Line 'LaneMarker' 0.066667 [5x2 double]
 Cuboid 'Truck' 0.099999 [1x9 double]

Output Arguments
isReady — True or false result of setup check
1 | 0

True or false result of the setup check, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2022a

See Also
labelType | lidarLabelType | lidar.labeler.AutomationAlgorithm |
checkLabelDefinition | checkSignalType

2 Objects

2-420

checkSignalType
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Validate signal type

Syntax
isValid = checkSignalType(signalType)

Description
In the Lidar Labeler app, the checkSignalType method validates whether each signal selected for
automation is of the type PointCloud.

isValid = checkSignalType(signalType) returns logical 1 (true) when the specified signal
type is valid.

Examples

Restrict Automation to Point Cloud Signals

Implement the checkSignalType method to designate PointCloud signals as valid and all other
signals as invalid.

function isValid = checkSignalType(signalType)
 isValid = (signalType == vision.labeler.loading.SignalType.PointCloud);
end

Input Arguments
signalType — Signal type
vision.labeler.loading.SignalType enumeration

Signal type, specified as a vision.labeler.loading.SignalType enumeration.
Example: vision.labeler.loading.SignalType.PointCloud

Output Arguments
isValid — Result of signal type validity check
1 | 0

Result of the signal type validity check, returned as logical 1 (true) or logical 0 (false).

 checkSignalType

2-421

Attributes
Static true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2022a

See Also
vision.labeler.loading.SignalType | lidar.labeler.AutomationAlgorithm |
checkLabelDefinition | checkSetup

2 Objects

2-422

initialize
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Initialize state for algorithm execution (optional)

Syntax
initialize(algObj,frame)
initialize(algObj,frame,labelsToAutomate)

Description
The initialize method initializes the state of the automation algorithm before the automation
algorithm runs.

Clients of AutomationAlgorithm can optionally implement this method.

initialize(algObj,frame) initializes the state of the algObj automation algorithm using the
first frame in the time range of the data being labeled.

Clients of AutomationAlgorithm must implement this user-defined method.

initialize(algObj,frame,labelsToAutomate) additionally provides a table,
labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling.
This syntax does not support voxel label automation. In addition, this syntax is available only for time-
dependent (temporal) automation algorithms.

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

frame — Frame corresponding to start of time range
pointCloud object

Frame corresponding to the start of time range, specified as a pointCloud object.

labelsToAutomate — Labels selected for automation
table

Labels selected for automation, specified as a table with these columns.

 initialize

2-423

Column Name Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

lidarLabelType.Voxel is not supported.
Name Character vector that contains the name of the label.
Time Scalar of type double that specifies the time, in seconds, when the label was

marked.

2 Objects

2-424

Column Name Description
Position Location of the label in the frame. The format of this vector depends on the

label type.

Label Type Position Format
Cuboid —
Cuboid ROI
labels

M-by-9 numeric vector of the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid

along the x-axis, y-axis, and z-axis, respectively.
• xrot, yrot, and zrot specify the rotation angles for the

cuboid along the x-axis, y-axis, and z-axis, respectively.
These angles are clockwise-positive when looking in the
forward direction of their corresponding axes.

This figure shows how these values specify the position of a
cuboid.

Line —
Polyline ROI
labels

M-by-1 vector of cell arrays, where M is the number of labels in
the frame. Each cell array contains an N-by-2 numeric matrix

 initialize

2-425

Column Name Description
Label Type Position Format

of the form [x1 y1; x2 y2; ... ; xN yN] for N points in
the polyline.

Scene —
Scene labels

Logical value of 1 if the label is present in the frame and 0
otherwise.

Each row of the table corresponds to a label selected for automation. This labelsToAutomate table
contains a line label with five points, and a cuboid label.

 Type Name Time Position
 _________ ____________ _________ ____________

 Line 'LaneMarker' 0.066667 [5x2 double]
 Cuboid 'Truck' 0.099999 [1x9 double]

Version History
Introduced in R2022a

See Also
lidar.labeler.AutomationAlgorithm | labelType | lidarLabelType | checkSetup | run |
terminate

2 Objects

2-426

run
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Run label automation on every frame in interval

Syntax
autoLabels = run(algObj,frame)

Description
The run method computes the automated labels for a single frame by executing the automation
algorithm. During automation, the Lidar Labeler app run this method in a loop to compute the
automated labels for each frame in the selection being automated.

Clients of AutomationAlgorithm must implement this method.

autoLabels = run(algObj,frame) processes a single frame, frame, using the algObj
automation algorithm, and returns the automated labels, autoLabels.

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

frame — Frame
pointCloud object

Frame whose labels are being computed, specified as a pointCloud object.

Output Arguments
autoLabels — Labels produced by automation

categorical matrix | structure array | table

Labels produced by the automation algorithm, returned as a categorical matrix, structure array, or
table.

For algorithms that automate voxel labeling, implement the run method to return autoLabels as a
categorical label matrix, where each category represents a voxel label.

For algorithms that automate nonvoxel labels, implement the run method to return a structure array.
Each structure in the array contains the labels of a specific name and type. The method combines
labels of the same name and type into a single structure in the array.

This table describes the columns of the autoLabels table or fields of each autoLabels structure.

 run

2-427

Field Name Description
Type labelType enumeration that contains the type of label definition. Valid label

types are:

• labelType.Cuboid
• labelType.Line
• labelType.Scene

Name Character vector containing the name of the label.

2 Objects

2-428

Field Name Description
Position Position of labels of the specified Name and Type. The format of Position

depends on the label type.

Label Type Position Format
Cuboid — Cuboid ROI labels M-by-9 numeric matrix with rows of

the form [xctr, yctr, zctr,
xlen, ylen, zlen, xrot, yrot,
zrot], where:

• M is the number of labels in the
frame.

• xctr, yctr, and zctr specify the
center of the cuboid.

• xlen, ylen, and zlen specify the
length of the cuboid along the x-
axis, y-axis, and z-axis,
respectively, before rotation has
been applied.

• xrot, yrot, and zrot specify the
rotation angles for the cuboid
along the x-axis, y-axis, and z-axis,
respectively. These angles are
clockwise-positive when looking in
the forward direction of their
corresponding axes.

The figure shows how these values
determine the position of a cuboid.

 run

2-429

Field Name Description
Label Type Position Format

Line — Polyline ROI labels M-by-1 vector of cell arrays, where M is
the number of labels in the frame.
Each cell array contains an N-by-2
numeric matrix of the form [x1 y1;
x2 y2; ... ; xN yN] for N points
in the polyline.

Scene — Scene labels Logical value of 1 if the algorithm
determines that the label is present in
the frame and 0 otherwise.

Attributes
(optional)

Structure array that contains one structure for each attribute in the label. If
the label definition does not contain attributes, then the autoLabels output
does not include this field.

For each structure in the Attributes structure array, the name of that
structure is the name of the corresponding attribute. The value of the structure
is the value of the corresponding attribute.

To view a sample autoLabels structure array, enter this code at the MATLAB command prompt.

autoLabels(1).Name = 'Car';
autoLabels(1).Type = labelType.Cuboid;
autoLabels(1).Position = [20 20 5 50 20 10 0 0 0];

autoLabels(2).Name = 'Truck';
autoLabels(2).Type = labelType.Cuboid;
autoLabels(2).Position = [70 50 10 70 40 20 0 0 0];

2 Objects

2-430

You can also use the run method to return autoLabels as a table. The table rows are equivalent to
the structures in a structure array. The table columns are equivalent to the structure fields. This table
is equivalent to the sample autoLabels structure array previously specified.

 Name Type Position
 ____________ _________ ____________

 'Car' Cuboid [1x9 double]
 'Truck' Cuboid [1x9 double]

Version History
Introduced in R2022a

See Also
lidar.labeler.AutomationAlgorithm | checkSetup | initialize | terminate | labelType
| lidarLabelType

 run

2-431

settingsDialog
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Display algorithm settings (optional)

Syntax
settingsDialog(algObj)

Description
The settingsDialog method runs when the user clicks Settings in the labeling app. Use this
method to provide a dialog figure with controls for user settings required for the algorithm. Use a
modal dialog, created using functions like dialog, inputdlg or listdlg.

Clients of AutomationAlgorithm can optionally implement this method.

settingsDialog(algObj) displays automated algorithm settings in a dialog.

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

Version History
Introduced in R2022a

2 Objects

2-432

supportsMultisignalAutomation
Package: lidar.labeler

Set multisignal algorithm automation flag

Syntax
success = supportsMultisignalAutomation(algObj)

Description
success = supportsMultisignalAutomation(algObj) indicates whether the automation
algorithm algObj supports the automation of multiple signals in a single automation session.
Implement this method in automation algorithms developed for the Ground Truth Labeler app,
which supports the labeling and automation of multiple signals. If the algorithm supports multisignal
automation, then this method returns success as true.

In automation algorithms developed for the Image Labeler, Video Labeler, and Lidar Labeler
apps, which support the labeling and automation of only one signal at a time, you can either delete
this method or leave it unchanged. The default implementation of this method indicates that the
automation algorithm does not support multisignal automation (success = false).

Examples

Indicate Algorithm Supports Multisignal Automation

Implement the supportsMultisignalAutomation method to indicate that the automation
algorithm supports multisignal automation. This method is static and does not use the input
automation algorithm, algObj. Therefore, you can specify the input argument as unused by using the
tilde (~) operator.

function success = supportsMultisignalAutomation(~)
 success = true;
end

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

Version History
Introduced in R2022a

 supportsMultisignalAutomation

2-433

See Also
Apps
Ground Truth Labeler

Objects
vision.labeler.AutomationAlgorithm

2 Objects

2-434

terminate
Class: lidar.labeler.AutomationAlgorithm
Package: lidar.labeler

Terminate automated algorithm (optional)

Syntax
terminate(algObj)

Description
The terminate method cleans up the state of the automation algorithm after run processes the last
frame in the specified interval or when you stop the automation algorithm.

Clients of AutomationAlgorithm can optionally implement this method.

terminate(algObj) cleans up the state of the automation algorithm.

Input Arguments
algObj — Automation algorithm
lidar.labeler.AutomationAlgorithm object

Automation algorithm, specified as a lidar.labeler.AutomationAlgorithm object.

Version History
Introduced in R2022a

See Also
checkSetup | initialize | run | lidar.labeler.AutomationAlgorithm

 terminate

2-435

lidar.labeler.mixin.Temporal class
Package: lidar.labeler.mixin

Mixin interface for adding temporal context to automation algorithms

Description
The lidar.labeler.mixin.Temporal class provides an interface for attaching temporal
properties to an automation algorithm used by the app.

The lidar.labeler.mixin.Temporal class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Properties
StartTime — Timestamp of first frame
scalar

Timestamp of the first frame of the algorithm interval, specified as a scalar.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

CurrentTime — Timestamp of current executing frame
scalar

Timestamp of the current executing frame, specified as a scalar. This value updates during the
execution of the algorithm.

Attributes:

GetAccess public
SetAccess private

EndTime — Timestamp of last frame
scalar

Timestamp of the last frame of the algorithm interval, specified as a scalar.

2 Objects

2-436

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

StartFrameIndex — Index of first frame
integer

Index of the first frame of the algorithm interval, specified as an integer.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

EndFrameIndex — Index of last frame
integer

Index of the last frame of the algorithm interval, specified as an integer.

Attributes:

GetAccess public
SetAccess private
Dependent true
NonCopyable true

AutomationDirection — Direction in which to run automated algorithm
'Forward' | 'Reverse'

Direction in which to run the automated algorithm, specified as 'Forward' or 'Reverse'.

Attributes:

GetAccess public
SetAccess private

Version History
Introduced in R2022a

See Also
Apps
Lidar Labeler | Ground Truth Labeler | Video Labeler

Objects
lidar.labeler.AutomationAlgorithm

Topics
“Create Automation Algorithm for Labeling”

 lidar.labeler.mixin.Temporal class

2-437

“Temporal Automation Algorithms”
“Automate Ground Truth Labeling For Vehicle Detection Using PointPillars”
“Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler”

2 Objects

2-438

supportsReverseAutomation
Set reverse algorithm automation flag

Syntax
flag = supportsReverseAutomation(algObj)

Description
flag = supportsReverseAutomation(algObj) indicates whether the temporal automation
algorithm, algObj, supports automation in the reverse direction. A true value enables the Ground
Truth Labeler or Video Labeler to open the algorithm in reverse mode.

Examples
Set Algorithm Automation Direction Flag

function flag = supportsReverseAutomation(algObj)
 flag = true;
end

Input Arguments
algObj — Temporal automation algorithm
lidar.labeler.mixin.Temporal object

Temporal automation algorithm, specified as a lidar.labeler.mixin.Temporal object.

Output Arguments
flag — Reverse automation indicator
true | false

Reverse automation indicator, returned as true or false.

Version History
Introduced in R2022a

See Also
Apps
Lidar Labeler | Ground Truth Labeler | Video Labeler

Objects

 supportsReverseAutomation

2-439

lidarLabelType
Lidar label type enumerations for labeling

Description
The lidarLabelType enumeration enables you to specify the voxel labels used in the Lidar Labeler
app. When creating label definitions by using a labelDefinitionCreatorLidar object, use this
enumerations to create label definitions of voxel type. When selecting labels from a
groundTruthLidar object, use these enumerations to select labels of voxel type.

Creation

Syntax
lidarLabelType('Voxel')

Description

lidarLabelType('Voxel') creates a voxel region of interest (ROI) label type for labeling point
cloud data. You can also use the programmatic format, lidarLabelType.Voxel.

Object Functions
isROI Determine if label types are ROI labels
isScene Determine if label types are Scene labels

Examples

Specify Label Types Using Lidar Label Definition Creator

Create a lidar label definition creator object.

ldc = labelDefinitionCreatorLidar();

Add labels named "Road", "Bike" with the label types specified as line, cuboid, respectively.

addLabel(ldc,'Road',labelType.Line);
addLabel(ldc,'Bike',labelType.Cuboid);

Create voxel labels named as "Car" and "Tree".

addLabel(ldc,'Car',lidarLabelType.Voxel);
addLabel(ldc,'Tree',lidarLabelType.Voxel);

Display the details of the definitions stored in the lidar label definition creator object.

ldc

2 Objects

2-440

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Road with 0 attributes and belongs to None group. (info)
 Bike with 0 attributes and belongs to None group. (info)
 Car with 0 attributes and belongs to None group. (info)
 Tree with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Version History
Introduced in R2022a

See Also
Apps
Lidar Labeler | Image Labeler | Ground Truth Labeler | Video Labeler

Objects
labelDefinitionCreatorLidar | groundTruthLidar | groundTruthMultisignal |
attributeType

Topics
“Get Started with the Lidar Labeler”
“Choose an App to Label Ground Truth Data”

 lidarLabelType

2-441

lasFileWriter
LAS or LAZ file writer

Description
A lasFileWriter object stores metadata for a LAS or LAZ file as read-only properties. The
writePointCloud object function uses these properties to write point cloud data as a LAS or LAZ
file. The lasFileWriter object supports up to the LAS 1.4 specification.

lasFileWriter supports writing only unorganized pointCloud objects. The created LAS file
contains a public header, which contains LAS file metadata, followed by the lidar point records.

The LAS file format is an industry-standard binary format for storing lidar data, developed and
maintained by the American Society for Photogrammetry and Remote Sensing (ASPRS). The LAZ file
format is a compressed version of the LAS file format.

Creation

Syntax
lasWriter = lasFileWriter(fileName)
lasWriter = lasFileWriter(fileName,Name=Value)

Description

lasWriter = lasFileWriter(fileName) creates a lasFileWriter object with default
properties to write lidar point cloud data into a LAS or LAZ file with the specified name fileName.
The fileName input sets the FileName property.

lasWriter = lasFileWriter(fileName,Name=Value) specifies the properties of the
lasFileWriter object by using one or more name-value arguments.

Properties
FileName — Name of LAS or LAZ file
character vector | string scalar

This property is read-only.

Name of the LAS or LAZ file, specified as a character vector or string scalar. You can specify the
extensions .las or .laz. If you do not specify a file extension, the default extension is .laz.

LasVersion — LAS or LAZ file version
"1.2" (default) | "1.0" | "1.1" | "1.3" | "1.4"

This property is read-only.

LAS or LAZ file version, specified as "1.0", "1.1", "1.2", "1.3", or "1.4".

2 Objects

2-442

Example: LasVersion="1.4" specifies the LAS version as 1.4.

PointDataFormat — Point data record format ID
3 (default) | 0 | 1 | 2 | 6 | 7 | 8

This property is read-only.

Point data record format ID, specified as 0, 1, 2, 3, 6, 7, or 8. Which point data record formats you
can specify dependents on the specified LasVersion property.

LAS or LAZ Version Supported Point Data Record Formats
1.0 Point data record formats 0 and 1
1.1 Point data record formats 0 and 1
1.2 Point data record formats 0 to 3
1.3 Point data record formats 0 to 3
1.4 Point data record formats 0 to 3 and 6 to 8

For more information, see “Point Data Record Format” on page 2-290.
Example: PointDataFormat=2 specifies the point data record format as 2.

XYZScale — Scale of coordinates
"auto" (default) | three-element real-valued row vector

This property is read-only.

Scale of the coordinates, specified as "auto" or a three-element real-valued row vector of the form
[Xscale Yscale Zscale]. When you call the writePointCloud function, the default value "auto"
calculates the XYZScale value using the XLimits, YLimits, and ZLimits properties of the input
pointCloud object. For more information, see “Point Cloud Data Representation” on page 2-444.
Example: XYZScale=[10 20 30] specifies the scale factors of the X-, Y-, and Z-coordinates as 10,
20, and 30 respectively.

XYZOffset — Offset of coordinates
"auto" (default) | three-element real-valued row vector

This property is read-only.

Offset of the coordinates, specified as "auto" or a three-element real-valued row vector of the form
[Xoffset Yoffset Zoffset]. When you call the writePointCloud function, the default value "auto"
calculates the XYZOffset value using the XLimits, YLimits, and ZLimits properties of the input
pointCloud object. For more information, see “Point Cloud Data Representation” on page 2-444.
Example: XYZOffset=[5 3 2] specifies the offset values of the X-, Y-, and Z-coordinates as 5, 3,
and 2 respectively.

Object Functions
writePointCloud Write point cloud data to LAS or LAZ file
addVLR Add VLR data to lasFileWriter object

Examples

 lasFileWriter

2-443

Write Point Cloud Data to LAS File

Create a lasFileReader object to access LAZ file data.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");
lasReader = lasFileReader(fileName);

Read the point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader,Classification=2);

Create a lasFileWriter object to store the point cloud data in a LAS file.

lasWriter = lasFileWriter("ground.las");

Write the point cloud data to the LAS file by using the writePointCloud function.

writePointCloud(lasWriter,ptCloud);

Algorithms
The point cloud coordinate values are calculated as:

x = X * Xscale + Xof f set
y = Y * Yscale + Yof f set
z = Z * Zscale + Zof f set

where, Xscale, Yscale, and Zscale are set by the XYZScale property, and Xoffset, Yoffset, and Zoffset
are set by the XYZOffset property. X, Y, and Z are the raw coordinate values of the point cloud data.
You must specify the [X Y Z] values for each point in a pointCloud object when writing them to a
LAS or LAZ file using the writePointCloud function.

Version History
Introduced in R2022a

R2022b: Support for VLR Data

You can write VLR data into the LAS or LAZ file by using the addVLR function.

See Also
Functions
pcwrite | pcshow | writePointCloud | addVLR

Objects
pointCloud | lidarPointAttributes | lasFileReader

2 Objects

2-444

writePointCloud
Write point cloud data to LAS or LAZ file

Syntax
writePointCloud(lasWriter,ptCloud)
writePointCloud(lasWriter,ptCloud,ptAttributes)

Description
writePointCloud(lasWriter,ptCloud) writes point cloud data from a non-empty, unorganized
pointCloud object, ptCloud, to a LAS or LAZ file using the lasFileWriter object lasWriter.

writePointCloud(lasWriter,ptCloud,ptAttributes) additionally writes the point attributes
specified by ptAttributes to the LAS or LAZ file.

Examples

Write Point Cloud Data and Point Attributes to LAZ File

Create a lasFileReader object to access LAZ file data.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
 "las","aerialLidarData2.las");
lasReader = lasFileReader(fileName);

Read the point cloud data and point attributes from the LAZ file using the readPointCloud
function.

[ptCloud,pointAttributes] = readPointCloud(lasReader, ...
 Classification=3:6, ...
 Attributes=["GPSTimeStamp","ScanAngle"]);

Create a lasFileWriter object to store the point cloud data in a LAS file.

lasWriter = lasFileWriter("points",PointDataFormat=1);

Write points related to vegetation and building in LAZ file.

writePointCloud(lasWriter,ptCloud,pointAttributes);

Input Arguments
lasWriter — LAS or LAZ file writer
lasFileWriter object

LAS or LAZ file writer, specified as a lasFileWriter object.

ptCloud — Point cloud
pointCloud object

 writePointCloud

2-445

Point cloud, specified as an unorganized pointCloud object.

Use the removeInvalidPoints function to remove invalid points from the point cloud and to
convert an organized point cloud to an unorganized point cloud.

ptAttributes — Point attributes
lidarPointAttributes object

Point attributes, specified as a lidarPointAttributes object. Unspecified fields of the
lidarPointAttributes object are set to their default values. The default values for the
LaserReturn and NumReturns fields are 1, while all other point properties defined by the ptCloud
and PtAttributes objects default to 0.

Version History
Introduced in R2022a

See Also
Functions
pcwrite | pcshow

Objects
pointCloud | lasFileReader | lidarPointAttributes

2 Objects

2-446

addVLR
Add VLR data to lasFileWriter object

Syntax
addVLR(lasWriter,recordID,userID,vlrData)
addVLR(___ ,description)

Description
addVLR(lasWriter,recordID,userID,vlrData) adds the variable length record (VLR) data
with the specified record ID and the user ID to the lasFileWriter object lasWriter.

addVLR(___ ,description) adds a description for the VLR data.

Examples

Write VLR Data to LAS File

Create a lasFileReader object to read LAS/LAZ file data into the workspace.

filename = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");
lasReader = lasFileReader(filename);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Create a lasFileWriter object to store the point cloud data read from the file. Specify the filename
and the LAS version.

lasWriter = lasFileWriter("points.las",LasVersion="1.4");

Add VLR data to the lasFileWriter object using the addVLR function. You must specify the record
ID, user ID, and the VLR data.

addVLR(lasWriter,3,"LASF_Spec","Sample VLR data")

Write the data into the LAS file using the writePointCloud function.

writePointCloud(lasWriter,ptCloud)

Write CRS Data in GeoTIFF Format to LAS File

Create a lasFileReader object to read LAS/LAZ file data into the workspace.

 addVLR

2-447

filename = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData2.las");
lasReader = lasFileReader(filename);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Read CRS data from the VLRs in GeoTIFF format using the readVLR function.

geoKeyVLR = readVLR(lasReader,34735);
geoAsciiParamsVLR = readVLR(lasReader,34737);

Create a lasFileWriter object to store the point cloud data read from the file. Specify the filename
and the LAS version.

lasWriter = lasFileWriter("pointsWithCRS.las",LasVersion="1.4");

Add geo-keys to the lasFileWriter object.

addVLR(lasWriter,34735,"LASF_Projection",geoKeyVLR.Data.KeyEntries)

Add geo-ASCII parameters to the lasFileWriter object.

addVLR(lasWriter,34737,"LASF_Projection",geoAsciiParamsVLR.Data)

Write the data into the LAS file using the writePointCloud function.

writePointCloud(lasWriter,ptCloud)

Input Arguments
lasWriter — LAS or LAZ file writer
lasFileWriter object

LAS or LAZ file writer, specified as a lasFileWriter object.

recordID — Record ID for VLR data
nonnegative integer

Record ID for the VLR data, specified as a nonnegative integer in the range [0, 65535]. For some
standard record IDs, see “VLR and CRS Data” on page 2-449.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

userID — User ID for VLR data
character vector | string scalar

User ID for the VLR data, specified as a character vector or string scalar. This value identifies the
user that created the VLR data. For some standard user IDs, see “VLR and CRS Data” on page 2-449.
Data Types: char | string

vlrData — VLR Data
character vector | string scalar | structure | numeric array

2 Objects

2-448

Variable length record data, specified as a character vector, a string scalar, a structure, or a numeric
array. For more information on VLR data for standard record ID and user ID combinations, see “VLR
and CRS Data” on page 2-449.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string | struct

description — Description for VLR data
character vector | string scalar

Description for the VLR data, specified as a character vector or a string scalar.
Data Types: char | string

Algorithms
A LAS or LAZ file contains a public header block, variable length records (VLR), point data records,
and extended variable length records (EVLR). VLRs and EVLRs are optional.

VLRs contain data about the projection information, metadata, waveform, and user information. This
table gives the list of some standard VLRs defined in the LAS specification.

Record ID User ID VLR Data
0 LASF_Spec A character vector or a string

representing the data from the
Classification Lookup
record.

3 LASF_Spec A character vector or a string
representing the ASCII data
from the Text Area
Description record.

2111 LASF_Projection A character vector or a string
representing the ASCII data
from the OGC Math
Transform WKT record.

2112 LASF_Projection A character vector or a string
representing the ASCII data
from the OGC Coordinate
System WKT record.

 addVLR

2-449

34735 LASF_Projection An array of structures
representing the data from the
GeoTiff key entries of the
GeoKeyDirectoryTag record.
The structure has these fields:

• KeyID — The ID for each key
of the GeoTIFF data.

• TiffTagLocation —
Indicates the data location
for the corresponding key. It
can take one of these three
values: 0, 34736, or 34737.

• Count — Indicates the
number of characters in the
GeoAsciiParamsTag string
value. Otherwise, this value
is 1.

• ValueOffset — The offset
value for the data location.
This value depends on the
value of TiffTagLocation.

34736 LASF_Projection A double vector representing
the numeric values from the
GeoDoubleParamsTag record.

34737 LASF_Projection A character vector or a string
representing the ASCII data
from the
GeoDoubleParamsTag record.

Coordinate reference system (CRS) data in a LAS file is represented in the well know text (WKT) or
GeoTIFF format.

• VLRs with record IDs 2111 and 2112, with the user ID LASF_Projection, represent the geo-
referencing information for the CRS data using well known text (WKT), in LAS files with point data
format, 6 to 10.

• VLRs with record IDs 34735, 34736, and 34737, with the user ID LASF_Projection, represent
the CRS data using GeoTIFF, in LAS files with point data format, 1 to 5.

For more information on the LAS file format, see the ASPRS LASER (LAS) File Format Exchange
Activities page.

Version History
Introduced in R2022b

See Also
lasFileWriter | writePointCloud | lasFileReader | readVLR | readCRS

2 Objects

2-450

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities

ousterFileReader
Read point cloud data from Ouster PCAP file

Description
The ousterFileReader object reads point cloud data from an Ouster® packet capture (PCAP) file.

Creation

Syntax
ousterReader = ousterFileReader(fileName,calibrationFile)
ousterReader = ousterFileReader(fileName,Name=Value)

Description

ousterReader = ousterFileReader(fileName,calibrationFile) creates an
ousterFileReader object that reads point cloud data from an Ouster PCAP file. Specify the PCAP
file fileName and the calibration file calibrationFile. The inputs set the FileName and
CalibrationFile properties, respectively.

ousterReader = ousterFileReader(fileName,Name=Value) specify SkipPartialFrames
and CoordinateFrame properties using one or more name-value arguments. For example,
ousterFileReader(fileName,calibrationFile,SkipPartialFrames=0) creates an Ouster
file reader that does not skip partial frames.

Properties
FileName — Name of Ouster PCAP file
character vector | string scalar

This property is read-only.

Name of the Ouster PCAP file, specified as a character vector or string scalar.

CalibrationFile — Name of Ouster calibration JSON file
character vector | string scalar

This property is read-only.

Name of the Ouster calibration JSON file, specified as a character vector or string scalar.

Note Specifying the incorrect calibration file returns no frames or an improperly calibrated point
cloud.

 ousterFileReader

2-451

SkipPartialFrames — Partial frame processing
true or 1 (default) | false or 0

This property is read-only.

Partial frame processing, specified as a logical 1 (true) or 0 (false). To skip partial frames, defined
as frames with a horizontal field of view less than the mean horizontal field of view of all frames in
the PCAP file, specify this property as true. Otherwise, specify it as false.

To set this property, you must specify it at object creation.
Example: SkipPartialFrames=true skips partial frames in the PCAP file.

CoordinateFrame — Coordinate frame for point cloud data
"center" (default) | "base"

This property is read-only.

Coordinate frame for point cloud data, specified as one of these options.

• "center" — Origin of the coordinate frame is at the center of the sensor.
• "base" — Origin of the coordinate frame is at the base of the sensor.

To set this property, you must specify it at object creation.
Example: CoordinateFrame="center" sets the origin of the coordinate frame at the center of the
sensor.
Data Types: char | string

DeviceModel — Name of device model
character vector

This property is read-only.

Name of the device model, specified as a character vector.

LidarMode — Mode of lidar sensor
character vector

This property is read-only.

Mode of the lidar sensor, specified as a character vector. The mode defines the horizontal resolution
and rotation frequency of the lidar sensor.

ReturnMode — Return modes of the point cloud data
{'strongest'} | {'secondStrongest'} | {'strongest','secondStrongest'}

This property is read-only.

Return modes of the point cloud data stored in the file, specified as {'strongest'},
{'secondStrongest'}, or {'strongest','secondStrongest'}.

FirmwareVersion — Firmware version of Ouster sensor
character vector

This property is read-only.

2 Objects

2-452

Firmware version of the Ouster sensor, stored as a character vector.

Note This function does not support reading data from Ouster PCAP files with firmware versions
1.13 and 2.4.

LidarUDPProfile — Lidar data packet format
character vector

This property is read-only.

Lidar data packet format in the file, stored as one of these values.

• 'LEGACY' — Legacy data packet format
• 'RNG19_RFL8_SIG16_NIR16' — Single return profile that is similar to the channel data block

present in the LEGACY format.
• 'RNG19_RFL8_SIG16_NIR16_DUAL'— Dual return profile that enables the sensor to output

strongest and second-strongest returns.
• 'RNG15_RFL8_NIR8' — Low data rate profile, where the data rate and data packet size are

smaller compared to other formats.

For more information on the data profiles, see the Sensor Data section in the Ouster Firmware User
Manual.

NumberOfFrames — Total number of point cloud frames in file
positive integer

This property is read-only.

Total number of point cloud frames in the file, specified as a positive integer.

Duration — Total duration of file
duration scalar

This property is read-only.

Total duration of the file, specified as a duration scalar in seconds.

StartTime — Time of first point cloud reading
duration scalar

This property is read-only.

Time of the first point cloud reading, specified as a duration scalar in seconds.

EndTime — Time of final point cloud reading
duration scalar

This property is read-only.

Time of the final point cloud reading, specified as a duration scalar in seconds.

CurrentTime — Time of current point cloud reading
duration scalar

 ousterFileReader

2-453

https://static.ouster.dev/sensor-docs/index.html

Time of the current point cloud reading, specified as a duration scalar in seconds. As you read point
clouds using readFrame, this property updates with the most recent point cloud reading time. You
can use reset to reset the value of this property to the default value. The default value matches the
StartTime property.

Timestamps — Start time for each point cloud frame
duration vector

This property is read-only.

Start time for each point cloud frame, specified as a duration vector with values in seconds. The
length of the vector is equal to the value of the NumberOfFrames property. The value of the first
element in the vector is same as the value of the StartTime property. You can use this property to
read point cloud frames captured at different times.

Object Functions
hasFrame Determine if another Ouster point cloud is available
readFrame Read Ouster point cloud from file
reset Reset ousterFileReader object to first frame

Examples

Read and Visualize Point Clouds from Ouster PCAP File

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Define X-, Y-, and Z-axes limits for pcplayer, in meters.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create a point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Set labels for the pcplayer axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

2 Objects

2-454

Specify the CurrentTime of the Ouster file reader so that it starts reading from 0.3 seconds after the
start time.

ousterReader.CurrentTime = ousterReader.StartTime + seconds(0.3);

Display the stream of point clouds from CurrentTime to the final point cloud.

while(hasFrame(ousterReader) && player.isOpen())
 ptCloud = readFrame(ousterReader);
 view(player,ptCloud);
end

Version History
Introduced in R2022a

R2023a: Object has additional properties

The ousterFileReader object includes these additional properties:

• ReturnMode

 ousterFileReader

2-455

• FirmwareVersion
• LidarUDPProfile

See Also
Functions
readFrame | hasFrame | pcplayer

Objects
hesaiFileReader | pointCloud | velodyneFileReader

External Websites
Ouster Product Documentation

2 Objects

2-456

https://ouster.com/downloads/

hasFrame
Determine if another Ouster point cloud is available

Syntax
isAvailable = hasFrame(ousterReader)

Description
isAvailable = hasFrame(ousterReader) determines if another point cloud is available in the
packet capture (PCAP) file of the input Ouster file reader. As you read point clouds using readFrame,
the point clouds are read sequentially until this function returns false.

Examples

Check for Next Point Cloud in Ouster PCAP File

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Check if the file reader has a point cloud to read using hasFrame.

disp(hasFrame(ousterReader))

 1

Read the last point cloud frame of the file.

ptCloud = readFrame(ousterReader,ousterReader.NumberOfFrames);

Check if ousterReader has a next point cloud available to read.

disp(hasFrame(ousterReader))

 0

 hasFrame

2-457

Input Arguments
ousterReader — Ouster file reader
ousterFileReader object

Ouster file reader, specified as ousterFileReader object.

Output Arguments
isAvailable — Frame is available
true or 1 (default) | false or 0

Frame is available, returned as 1 (true) or 0 (false). This argument returns true if the Ouster file
reader contains one or more point cloud frames to read after the current frame. Otherwise, it returns
false.

Version History
Introduced in R2022a

See Also
ousterFileReader | readFrame | reset | velodyneFileReader | hasFrame |
hesaiFileReader | hasFrame | pointCloud

External Websites
Ouster Product Documentation

2 Objects

2-458

https://ouster.com/downloads/

readFrame
Read Ouster point cloud from file

Syntax
ptCloud = readFrame(ousterReader)
ptCloud = readFrame(ousterReader,frameNumber)
ptCloud = readFrame(ousterReader,frameTime)
[ptCloud,pcAttributes] = readFrame(___)
[___] = readFrame(___ ,ReadMode=rMode)

Description
ptCloud = readFrame(ousterReader) reads the next point cloud in sequence from the Ouster
PCAP file and returns a pointCloud object.

Note This function does not support reading data from Ouster PCAP files with firmware versions
1.13 and 2.4.

ptCloud = readFrame(ousterReader,frameNumber) reads the point cloud with the specified
frame number from the file.

ptCloud = readFrame(ousterReader,frameTime) reads the first point cloud recorded at or
after the given frameTime.

[ptCloud,pcAttributes] = readFrame(___) returns a structure, pcAttributes, containing
attributes for each point using any combination of input arguments from previous syntaxes.

[___] = readFrame(___ ,ReadMode=rMode) additionally specifies which the return mode to
read from the file.

Examples

Read Ouster PCAP Point Cloud Using Frame Number

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

 readFrame

2-459

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Read the fifth frame of the Ouster PCAP point cloud data.

frameNumber = 5;
ptCloud = readFrame(ousterReader,frameNumber);

Display the point cloud.

pcshow(ptCloud)

Read Ouster PCAP Point Cloud Using Time Duration

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

2 Objects

2-460

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Read the first Ouster PCAP point cloud frame from 3 seconds after start time.

frameTime = ousterReader.StartTime + seconds(3);
[ptCloud,pcatt] = readFrame(ousterReader,frameTime);

Display the point cloud.

pcshow(ptCloud)

Read Strongest Return Point Cloud Data from Ouster PCAP File

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

 readFrame

2-461

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Read the strongest return data from the tenth point cloud.

frameNumber = 10;
ptCloud = readFrame(ousterReader,frameNumber,ReadMode="strongest");

Display the point cloud.

pcshow(ptCloud)

Input Arguments
ousterReader — Ouster file reader
ousterFileReader object

Ouster file reader, specified as ousterFileReader object.

frameNumber — Frame number of desired point cloud in file
positive integer

Frame number of the desired point cloud in the file, specified as a positive integer. Frame numbers
are sequential.

frameTime — Frame time of desired point cloud in file
duration scalar

2 Objects

2-462

Frame time of the desired point cloud in the file, specified as a duration scalar in seconds. The
function returns the first frame available at or after the specified frameTime.

rMode — Return mode of data to read from the file
character vector | string scalar | cell array of character vectors | string array

Return mode of the data to read from the file, specified as a character vector, string scalar, cell array
of character vectors, or string array. The value must be a subset of the ReturnMode property of the
ousterFileReader object. By default, the function reads all the return modes stored in the file.

Output Arguments
ptCloud — Point cloud
pointCloud object | array of pointCloud objects

Point cloud, returned as a pointCloud object.

When you specify the rMode value to read multiple return modes, the function returns an array of
point clouds in the same order of the specified return modes.

pcAttributes — Point cloud attributes
structure | array of structures

Point cloud attributes for each point, returned as a structure that contains these fields:

• Range — Distance from the origin, specified as an M-by-N matrix, same as the size of Location
property of pointCloud object ptCloud, in meters.

• SignalPhoton — Signal intensity of photons in the signal return measurement, specified as an
M-by-N matrix, same as the size of Location property of pointCloud object ptCloud.

• NearInfrared — Near infrared (NIR) photons related to natural environmental illumination,
specified as an M-by-N matrix, same as the size of Location property of pointCloud object
ptCloud.

When you specify the rMode value to read multiple return modes, the function returns the point
attributes as an array of structures, in the same order of the specified return modes.

Version History
Introduced in R2022a

R2023a: Support for reading multiple return modes from file

You can now specify which data to read from the file by return mode using the rMode argument. For
example, readFrame(ousterReader,ReadMode="strongest") reads the strongest return data
from the file.

See Also
ousterFileReader | hasFrame | reset | velodyneFileReader | readFrame |
hesaiFileReader | readFrame | pointCloud | pcshow

 readFrame

2-463

External Websites
Ouster Product Documentation

2 Objects

2-464

https://ouster.com/downloads/

reset
Reset ousterFileReader object to first frame

Syntax
reset(ousterReader)

Description
reset(ousterReader) resets the Ouster file reader object ousterReader to the first frame by
resetting its CurrentTime property to the default value. The default value is the value of the
StartTime property of ousterReader.

Examples

Reset ousterFileReader Object

Download a ZIP file containing an Ouster packet capture (PCAP) file and the corresponding
calibration file, and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar", "data/ouster_RoadIntersection.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'ouster_RoadIntersection.pcap'];
calibFileName = [saveFolder filesep 'ouster_RoadIntersection' filesep 'OS1-128U.json'];
if ~(exist(pcapFileName,"file") && exist(calibFileName,"file"))
 unzip(zipFile,saveFolder);
end

Create an ousterFileReader object.

ousterReader = ousterFileReader(pcapFileName,calibFileName);

Read the 100th point cloud from the Ouster PCAP file.

ptCloud = readFrame(ousterReader,100);

Check the difference between the values of CurrentTime and StartTime.

disp(ousterReader.CurrentTime - ousterReader.StartTime)

 9.9977 sec

Reset the ousterFileReader object.

reset(ousterReader);

Display the difference between the values of CurrentTime and StartTime.

disp(ousterReader.CurrentTime - ousterReader.StartTime)

 0 sec

 reset

2-465

Input Arguments
ousterReader — Ouster file reader
ousterFileReader object

Ouster file reader, specified as an ousterFileReader object.

Version History
Introduced in R2022a

See Also
ousterFileReader | hasFrame | readFrame | velodyneFileReader | reset |
hesaiFileReader | reset

External Websites
Ouster Product Documentation

2 Objects

2-466

https://ouster.com/downloads/

hesaiFileReader
Read point cloud data from Hesai PCAP file

Description
The hesaiFileReader object reads point cloud data from a Hesai® packet capture (PCAP) file.

Creation

Syntax
hesaiReader = hesaiFileReader(fileName,deviceModel)
hesaiReader = hesaiFileReader(___ ,Name=Value)

Description

hesaiReader = hesaiFileReader(fileName,deviceModel) creates a hesaiFileReader
object that reads point cloud data from a Hesai PCAP file. Specify the PCAP file fileName and the
device model deviceModel. The inputs set the FileName and DeviceModel properties,
respectively. The reader supports the Pandar128E3X, Pandar64, PandarQT, and PandarXT32 device
models.

hesaiReader = hesaiFileReader(___ ,Name=Value) specify CalibrationFile and
SkipPartialFrames properties using one or more name-value arguments. For example,
hesaiFileReader(fileName,deviceModel,SkipPartialFrames=0) creates an Hesai file
reader that does not skip partial frames.

Properties
FileName — Name of Hesai PCAP file
character vector | string scalar

This property is read-only.

Name of the Hesai PCAP file, specified as a character vector or string scalar.

DeviceModel — Name of Hesai device model
"Pandar128E3X" | "Pandar64" | "PandarQT" | "PandarXT32"

This property is read-only.

Name of the Hesai device model, specified as "Pandar128E3X", "Pandar64", "PandarQT", or
"PandarXT32".

Note Specifying the incorrect device model returns no frames or an improperly calibrated point
cloud.

 hesaiFileReader

2-467

CalibrationFile — Name of Hesai calibration CSV file
'' (default) | character vector | string scalar

This property is read-only.

Name of the Hesai calibration CSV file, specified as a character vector or string scalar. This
calibration file is included with every sensor.

To set this property, you must specify it at object creation.
Example: CalibrationFile='CalibrationFileName' specifies the Hesai calibration CSV file.

SkipPartialFrames — Partial frame processing
true or 1 (default) | false or 0

This property is read-only.

Partial frame processing, specified as a logical 1 (true) or 0 (false). To skip partial frames, defined
as frames with a horizontal field of view less than the mean horizontal field of view of all frames in
the PCAP file, specify this property as true. Otherwise, specify it as false.

To set this property, you must specify it at object creation.
Example: SkipPartialFrames=true skips partial frames in the PCAP file.

ReturnMode — Return mode of Hesai PCAP file
character vector

This property is read-only.

Return mode of the Hesai PCAP file, specified as a character vector.

NumberOfFrames — Total number of point cloud frames in file
positive integer

This property is read-only.

Total number of point cloud frames in the file, specified as a positive integer.

Duration — Total duration of file
duration scalar

This property is read-only.

Total duration of the file, specified as a duration scalar in seconds.

StartTime — Time of first point cloud reading
duration scalar

This property is read-only.

Time of the first point cloud reading, specified as a duration scalar in seconds.

The Hesai sensor sets the start time value relative to the most recent second. For instance, if the file
is recorded for 7 minutes from 1:58:00.5 p.m. to 2:05:00.5 p.m., then:

2 Objects

2-468

• StartTime = 0.5 s
• EndTime = StartTime + 7 min × 60 s = 420.5 s

EndTime — Time of last point cloud reading
duration scalar

This property is read-only.

Time of the last point cloud reading, specified as a duration scalar in seconds.

The Hesai sensor sets the start time value relative to the most recent second. For instance, if the file
is recorded for 7 minutes from 1:58:00.5 p.m. to 2:05:00.5 p.m., then:

• StartTime = 0.5 s
• EndTime = StartTime + 7 min × 60 s = 420.5 s

CurrentTime — Time of current point cloud reading
duration scalar

Time of the current point cloud reading, specified as a duration scalar in seconds. As you read point
clouds using readFrame, this property updates with the most recent point cloud reading time. You
can use reset to reset the value of this property to the default value. The default value matches the
StartTime property.

Timestamps — Start time for each point cloud frame
duration vector

This property is read-only.

Start time for each point cloud frame, specified as a duration vector with values in seconds. The
length of the vector is equal to the value of the NumberOfFrames property. The value of the first
element in the vector is same as the value of the StartTime property. You can use this property to
read point cloud frames captured at different times.

Object Functions
hasFrame Determine if another Hesai point cloud is available
readFrame Read Hesai point cloud from file
reset Reset hesaiFileReader object to first frame

Examples

Read and Visualize Point Clouds from Hesai PCAP File

Download a ZIP file containing a Hesai packet capture (PCAP) file and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/hesai_BusyRoad.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'hesai_BusyRoad.pcap'];
if ~exist(pcapFileName,"file")
 unzip(zipFile,saveFolder);
end

Create a hesaiFileReader object.

 hesaiFileReader

2-469

hesaiReader = hesaiFileReader(pcapFileName,"Pandar128E3X");

Define X-, Y-, and Z-axes limits for pcplayer, in meters.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create a point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Set labels for the pcplayer axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

Specify the CurrentTime of the Hesai file reader so that it starts reading from 0.3 seconds after the
start time.

hesaiReader.CurrentTime = hesaiReader.StartTime + seconds(0.3);

Display the stream of point clouds from CurrentTime to the final point cloud.

while(hasFrame(hesaiReader) && player.isOpen())
 ptCloud = readFrame(hesaiReader);
 view(player,ptCloud(1));
end

2 Objects

2-470

Version History
Introduced in R2022a

See Also
Functions
readFrame | hasFrame | pcshow | pcplayer

Objects
pointCloud | ousterFileReader | velodyneFileReader

External Websites
Hesai Product Documentation

 hesaiFileReader

2-471

https://www.hesaitech.com/en/download

hasFrame
Determine if another Hesai point cloud is available

Syntax
isAvailable = hasFrame(hesaiReader)

Description
isAvailable = hasFrame(hesaiReader) determines if another point cloud is available in the
packet capture (PCAP) file of the input Hesai file reader. As you read point clouds using readFrame,
the point clouds are read sequentially until this function returns false.

Examples

Check for Next Point Cloud in Hesai PCAP File

Download a ZIP file containing a Hesai packet capture (PCAP) file and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/hesai_BusyRoad.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'hesai_BusyRoad.pcap'];
if ~exist(pcapFileName,"file")
 unzip(zipFile,saveFolder);
end

Create a hesaiFileReader object.

hesaiReader = hesaiFileReader(pcapFileName,"Pandar128E3X");

Check if hesaiReader has a next point cloud to read.

disp(hasFrame(hesaiReader))

 1

Read the last frame in the file.

ptCloud = readFrame(hesaiReader,hesaiReader.NumberOfFrames);

Check if hesaiReader has a next point cloud frame available to read.

disp(hasFrame(hesaiReader))

 0

Input Arguments
hesaiReader — Hesai file reader
hesaiFileReader object

2 Objects

2-472

Hesai file reader, specified as hesaiFileReader object.

Output Arguments
isAvailable — Frame is available
true or 1 (default) | false or 0

Frame is available, returned as 1 (true) or 0 (false). This argument returns true if the Hesai file
reader contains one or more point cloud frames to read after the current frame. Otherwise, it returns
false.

Version History
Introduced in R2022a

See Also
hesaiFileReader | readFrame | reset | velodyneFileReader | hasFrame |
ousterFileReader | hasFrame | pointCloud

External Websites
Hesai Product Documentation

 hasFrame

2-473

https://www.hesaitech.com/en/download

readFrame
Read Hesai point cloud from file

Syntax
ptCloud = readFrame(hesaiReader)
ptCloud = readFrame(hesaiReader,frameNumber)
ptCloud = readFrame(hesaiReader,frameTime)
ptCloud = readFrame(___ ,ReadMode=readMode)

Description
ptCloud = readFrame(hesaiReader) reads the next point cloud in sequence from the Hesai
PCAP file and returns a pointCloud object.

ptCloud = readFrame(hesaiReader,frameNumber) reads the point cloud with the specified
frame number from the file.

ptCloud = readFrame(hesaiReader,frameTime) reads the first point cloud recorded at or after
the given frameTime.

ptCloud = readFrame(___ ,ReadMode=readMode) reads the points that belong to the specified
return mode readMode.

Examples

Read Hesai PCAP Point Cloud Using Frame Number

Download a ZIP file containing a Hesai packet capture (PCAP) file and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/hesai_BusyRoad.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'hesai_BusyRoad.pcap'];
if ~exist(pcapFileName,"file")
 unzip(zipFile,saveFolder);
end

Create a hesaiFileReader object.

hesaiReader = hesaiFileReader(pcapFileName,"Pandar128E3X");

Read the fifth frame of the Hesai PCAP point cloud data.

frameNumber = 5;
ptCloud = readFrame(hesaiReader,frameNumber);

Display the point cloud.

pcshow(ptCloud(1))

2 Objects

2-474

Read Hesai PCAP Point Cloud Using Time Duration

Download a ZIP file containing a Hesai packet capture (PCAP) file and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/hesai_BusyRoad.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'hesai_BusyRoad.pcap'];
if ~exist(pcapFileName,"file")
 unzip(zipFile,saveFolder);
end

Create a hesaiFileReader object.

hesaiReader = hesaiFileReader(pcapFileName,"Pandar128E3X");

Read the first Hesai PCAP point cloud frame from 3 seconds after the StartTime.

frameTime = hesaiReader.StartTime + seconds(3);
ptCloud = readFrame(hesaiReader,frameTime);

Display the point cloud.

pcshow(ptCloud(1))

 readFrame

2-475

Input Arguments
hesaiReader — Hesai file reader
hesaiFileReader object

Hesai file reader, specified as a hesaiFileReader object.

frameNumber — Frame number of desired point cloud in file
positive integer

Frame number of the desired point cloud in the file, specified as a positive integer. Frame numbers
are sequential.

frameTime — Frame time of desired point cloud in file
duration scalar

Frame time of the desired point cloud in the file, specified as a duration scalar in seconds. The
function returns the first frame available at or after the specified frameTime.

readMode — Mode for reading data from Hesai PCAP file
"hesaiReader.ReturnMode" (default) | character vector | cell array of character vectors | string
scalar | string array

2 Objects

2-476

Mode for reading data from the Hesai PCAP file, specified as a character vector, cell array of
character vectors, string scalar, or a string array. This value must be a subset of the ReturnMode
property of the hesaiFileReader object.

If you specify this argument as a cell array of character vectors or string array, then this function
returns a point cloud array containing point clouds that belong to the specified modes in the same
order.
Example: ReadMode="hesaiReader.ReturnMode" specifies the return mode to read point cloud
data.

Output Arguments
ptCloud — Point cloud
pointCloud object | array of pointCloud objects

Point cloud, returned as a pointCloud object or array of pointCloud objects. The function returns
an array of pointCloud objects only when you specify readMode as a cell array of character vectors
or string array. The order of the pointCloud objects in the array corresponds to the order of the
specified read modes in the readMode argument.

Version History
Introduced in R2022a

See Also
hesaiFileReader | hasFrame | reset | velodyneFileReader | readFrame |
ousterFileReader | readFrame | pointCloud | pcshow

External Websites
Hesai Product Documentation

 readFrame

2-477

https://www.hesaitech.com/en/download

reset
Reset hesaiFileReader object to first frame

Syntax
reset(hesaiReader)

Description
reset(hesaiReader) resets Hesai file reader object hesaiReader to the first frame by resetting
its CurrentTime property to the default value. The default value is the value of the StartTime
property of hesaiReader.

Examples

Reset hesaiFileReader Object

Download a ZIP file containing a Hesai packet capture (PCAP) file and then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("lidar","data/hesai_BusyRoad.zip");
saveFolder = fileparts(zipFile);
pcapFileName = [saveFolder filesep 'hesai_BusyRoad.pcap'];
if ~exist(pcapFileName,"file")
 unzip(zipFile,saveFolder);
end

Create a hesaiFileReader object.

hesaiReader = hesaiFileReader(pcapFileName,"Pandar128E3X");

Read the 100th point cloud from the Hesai PCAP file.

ptCloud = readFrame(hesaiReader,100);

Check the difference between the values of CurrentTime and StartTime.

disp(hesaiReader.CurrentTime - hesaiReader.StartTime)

 10 sec

Reset the hesaiFileReader object.

reset(hesaiReader);

Display the difference between the values of CurrentTime and StartTime.

disp(hesaiReader.CurrentTime - hesaiReader.StartTime)

 0 sec

2 Objects

2-478

Input Arguments
hesaiReader — Hesai file reader
hesaiFileReader object

Hesai file reader, specified as a hesaiFileReader object.

Version History
Introduced in R2022a

See Also
hesaiFileReader | readFrame | hasFrame | velodyneFileReader | reset |
ousterFileReader | reset

External Websites
Hesai Product Documentation

 reset

2-479

https://www.hesaitech.com/en/download

Functions

3

removeHiddenPoints
Remove hidden points from point cloud

Syntax
ptCloudOut = removeHiddenPoints(ptCloudIn,viewPoint)
ptCloudOut = removeHiddenPoints(ptCloudIn,viewPoint,RadiusScale=rScale)
[ptCloudOut,indices] = removeHiddenPoints(___)

Description
ptCloudOut = removeHiddenPoints(ptCloudIn,viewPoint) removes hidden points from the
point cloud ptCloudIn. . The function removes the points hidden when viewing the point cloud from
the specified viewpoint viewPoint. Determining the visibility of a point can be useful for shadow
casting, reconstruction, and camera placement.

ptCloudOut = removeHiddenPoints(ptCloudIn,viewPoint,RadiusScale=rScale)
specifies the radius scale of the spherical projection.

[ptCloudOut,indices] = removeHiddenPoints(___) returns the indices of the points visible
from the specified viewpoint, using any combination of input arguments from previous syntaxes.

Examples

Remove Hidden Points in Point Cloud

Read point cloud data from a PLY file into the workspace.

ptCloud = pcread("teapot.ply");

Define the viewpoint.

viewPosition = [0 0 13];

Compute the indices of the visible points in the point cloud from the specified viewpoint, and remove
the hidden points.

[ptCloudOut,indices] = removeHiddenPoints(ptCloud,viewPosition);

Display the visible points.

pcshow(ptCloudOut)
campos(viewPosition)

3 Functions

3-2

Input Arguments
ptCloudIn — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object.

viewPoint — Viewpoint
three-element vector

Viewpoint, specified as a three-element vector of the form [x y z]. Viewpoint can be inside or outside
the point cloud.
Data Types: single | double

rScale — Radius scale
3 (default) | positive scalar

Radius scale of the spherical projection, specified as a positive scalar. The function scales the radius
to a value of 10n, where n is the value of rScale. Increasing the radius scale increases the number of
visible points.

Note Specify a higher radius scale value for dense point clouds.

 removeHiddenPoints

3-3

Data Types: single | double

Output Arguments
ptCloudOut — Output point cloud
pointCloud object

Output point cloud, returned as a pointCloud object.

indices — Linear indices of visible points
M-element column vector

Indices of the points visible from the specified viewpoint, returned as an M-element column vector. M
is the number of visible points.

Algorithms
The function uses these steps to determine the visible points in a point cloud from a specified
viewpoint.

1 Associate the point cloud with a coordinate system whose center lies at the viewpoint.
2 Perform inversion using spherical projection.

a Create a sphere of radius R such that all points in the point cloud lie within the sphere. You
can control the radius value by using the rScale input.

b Transform the point cloud by reflecting each point, with respect to the sphere, along the line
joining the point and the viewpoint.

3 Calculate a convex hull of the transformed point cloud and the viewpoint. The points inside the
convex hull are the visible points.

Version History
Introduced in R2023a

See Also
pcdownsample | pcdenoise | removeInvalidPoints | pcorganize

3 Functions

3-4

undistortEgoMotion
Undistort point cloud affected by ego motion

Syntax
ptCloudOut = undistortEgoMotion(ptCloudIn,relTform,pointTimestamps,sweepTime)

Description
ptCloudOut = undistortEgoMotion(ptCloudIn,relTform,pointTimestamps,sweepTime)
undistorts a point cloud, ptCloudIn, using the transformation relTform, the timestamp of each
point pointTimestamps, and the lidar sweep time sweepTime.

undistortEgoMotion undistorts a point cloud affected by the motion of the sensor during the lidar
sweep, assuming that the sensor sweeps at a constant speed when collecting the point cloud data. To
undistort the point cloud, the function transforms the points in ptCloudIn back to where they would
have been detected if the lidar sensor had not moved while completing the lidar sweep.

Examples

Undistort Point Cloud

Create a velodyneFileReader object, and read PCAP-formatted data into the workspace.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read the point cloud to undistort.

frameToUndistort = 38;
prevPtCloud = readFrame(veloReader,frameToUndistort - 1);
[ptCloud,pointTimestamps] = readFrame(veloReader,frameToUndistort);

Estimate the motion of the vehicle during the lidar sweep. The estimated motion can come from other
sensors, such as an IMU or GPS. In this case, the estimated motion comes from point cloud
registration.

gridStep = 1;
relTform = pcregisterloam(ptCloud,prevPtCloud,gridStep);

Undistort the point cloud.

startTime = veloReader.Timestamps(frameToUndistort);
endTime = veloReader.CurrentTime;
undistortedPtCloud = undistortEgoMotion(ptCloud,relTform,pointTimestamps,[startTime endTime]);

Visualize the point cloud before and after motion compensation.

figure
pcshowpair(ptCloud,undistortedPtCloud)
view(2)
hold on

 undistortEgoMotion

3-5

Visualize where the Lidar sweep starts and ends with a red line.

plot3([0 0],[0 ptCloud.YLimits(2)],[0 0],"r",LineWidth=1)

Input Arguments
ptCloudIn — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object.

relTform — Relative transformation
rigidtform3d object

Relative transformation, specified as a rigidtform3d object. The relTform transformation
represents the relative motion of the sensor from the position where it ends the sweep to the position
where it started the sweep.

pointTimestamps — Timestamp of each point
M-element vector of duration objects | M-by-N matrix of duration objects

Timestamp of each point, specified as an M-element vector or an M-by-N matrix of duration objects.
The size of the pointTimestamps input depends on the size of the Location property of the
ptCloudIn input.

3 Functions

3-6

Location Property pointTimestamps Value
M-by-3 matrix M-element vector
M-by-N-by-3 matrix M-by-N matrix

sweepTime — Sweep start and end time
2-element vector of duration objects

Sweep start and end time, specified as a 2-element vector of duration objects of the form [startTime
endTime].

Output Arguments
ptCloudOut — Undistorted point cloud
pointCloud object

Undistorted point cloud, returned as a pointCloud object. The size and type of the Location
property of ptCloudOut is equal to the size and type of the Location property of ptCloudIn.

Version History
Introduced in R2023a

References
[1] Shoemake, Ken. " Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics 19, no. 3 (July 1985): 245–54.

See Also
Functions
pcdenoise | pctransform

Objects
velodyneFileReader

 undistortEgoMotion

3-7

clusterConnectedFaces
Cluster connected faces

Syntax
[faceClusterIdx,clusterNumFaces,clusterArea] = clusterConnectedFaces(
surfaceMeshIn)

Description
[faceClusterIdx,clusterNumFaces,clusterArea] = clusterConnectedFaces(
surfaceMeshIn) clusters the connected faces in the surface mesh surfaceMeshIn, and returns
the cluster index for each face faceClusterIdx, the number of connected faces in each cluster
clusterNumFaces, and the surface area of each cluster clusterArea.

Examples

Cluster Connected Faces of Surface Mesh

Define 12 mesh vertices in a 12-by-3 matrix vertices. Each row of vertices specifies the [x y z]
coordinates of a vertex. Each vertex has a vertex ID equal to its row number in vertices.

vertices = [1 -1 1;
 1 1 1;
 -1 1 1;
 -1 -1 1;
 1 -1 -1;
 1 1 -1;
 -1 1 -1;
 -1 -1 -1;
 2 0 0;
 2 2 0;
 1 0 0;
 -1 0 -2];

Use the vertices to define triangular mesh faces in the matrix faces. Each row of the matrix is in the
form [V1 V2 V3], specifying the vertex IDs of the vertices that define the triangular face.

faces = [6 2 1;
 1 5 6;
 8 4 3;
 3 7 8;
 6 7 3;
 3 2 6;
 5 1 4;
 4 8 5;
 4 1 2;
 2 3 4;
 7 6 5;
 5 8 7;
 9 10 11;

3 Functions

3-8

 9 10 12;
 9 11 12;
 10 11 12];

Create a surface mesh from the vertices and faces.

mesh = surfaceMesh(vertices,faces);

Cluster the connected triangular faces of the mesh.

[faceClusterIdx,clusterNumFaces,clusterArea] = clusterConnectedFaces(mesh);

Visualize the surface mesh.

surfaceMeshShow(mesh,Title="Original Mesh")

Extract the first cluster of the surface mesh.

idx = 1:size(vertices);
firstFaces = faces(faceClusterIdx==1,:);
idx(unique(firstFaces))=[];
firstMesh = surfaceMesh(vertices,firstFaces);
removeVertices(firstMesh,idx)

 clusterConnectedFaces

3-9

Visualize the first cluster of the surface mesh.

surfaceMeshShow(firstMesh,Title="First Cluster Mesh")

Extract the second cluster of the surface mesh.

idx = 1:size(vertices);
secondFaces = faces(faceClusterIdx==2,:);
idx(unique(secondFaces))=[];
secondMesh = surfaceMesh(vertices,secondFaces);
removeVertices(secondMesh,idx)

Visualize the second cluster of the surface mesh.

surfaceMeshShow(secondMesh,Title="Second Cluster Mesh")

3 Functions

3-10

Input Arguments
surfaceMeshIn — Input surface mesh
surfaceMesh object

Input surface mesh, specified as a surfaceMesh object.

Output Arguments
faceClusterIdx — Cluster indices of faces
numeric vector

Cluster indices of faces, returned as a numeric vector. Each element of the vector specifies the
cluster index of a face in the surface mesh. The length of the faceClusterIdx vector is equal to the
number of faces in surfaceMeshIn.
Data Types: uint64

 clusterConnectedFaces

3-11

clusterNumFaces — Number of connected faces in each cluster
numeric vector

Number of connected faces in each cluster, returned as a numeric vector. Each element of the vector
specifies the number of connected faces in a cluster. The length of the clusterNumFaces vector is
equal to the number of clusters created from the connected faces of surfaceMeshIn.
Data Types: uint64

clusterArea — Surface area of clusters
numeric vector

Surface area of clusters, returned as a numeric vector. Each element of the vector specifies the
surface area of a cluster of connected faces. The length of the clusterArea vector is equal to the
number of clusters created from the connected faces of surfaceMeshIn.
Data Types: double

Version History
Introduced in R2023a

See Also
surfaceMesh | readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow | pc2surfacemesh

3 Functions

3-12

smoothSurfaceMesh
Smooth surface mesh

Syntax
surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations)
surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations,Name=Value)

Description
surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations) smooths the
surface mesh surfaceMeshIn iteratively in the specified number of iterations numIterations.

surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations,Name=Value)
specifies options using one or more optional name-value arguments. For example,
SmoothVertexColors=true smooths the vertex colors of the surface mesh.

Examples

Smooth Surface Mesh Using Average, Laplacian, and Taubin Filters

Define the x-, y-, and z- coordinates of the vertices.

[x,y] = meshgrid(1:15,1:15);
z = peaks(15);
vertices = [x(:) y(:) z(:)];

Define triangular faces for the vertices using Delaunay triangulation.

faces = delaunay(x,y);

Define a surface mesh from the vertices and faces.

surfaceMeshIn = surfaceMesh(vertices,faces);

Visualize the surface mesh.

surfaceMeshShow(surfaceMeshIn,Title="Original Mesh")

 smoothSurfaceMesh

3-13

Smooth Surface Mesh using Average Filter

Smooth the surface mesh using the average filter with varying number of iterations. Visualize the
smooth surface meshes. Observe that the smoothing increases with number of iterations. The mesh
shrinkage also increases with number of iterations.

for numIterations = [2 5 10]
 surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations);
 surfaceMeshShow(surfaceMeshOut,Title="Average Filter (Iterations = "+numIterations+")")
end

3 Functions

3-14

 smoothSurfaceMesh

3-15

3 Functions

3-16

Smooth Surface Mesh using Laplacian Filter

Smooth the surface mesh using the Laplacian filter with varying scale factor. Visualize the smooth
surface meshes. Observe that the smoothing increases with the scale factor.

numIterations = 5;
for scaleFactor = [0.3 0.6 0.9]
 surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations,Method="Laplacian",ScaleFactor=scaleFactor);
 surfaceMeshShow(surfaceMeshOut,Title="Laplacian Filter (Scale Factor = "+scaleFactor+")")
end

 smoothSurfaceMesh

3-17

3 Functions

3-18

 smoothSurfaceMesh

3-19

Smooth Surface Mesh using Taubin Filter

Smooth the surface mesh using the Taubin filter. Visualize the smooth surface meshes. Observe that
the mesh does not shrink even after 5 iterations.

numIterations = 5;
scaleFactor = [-0.62 0.6];
surfaceMeshOut = smoothSurfaceMesh(surfaceMeshIn,numIterations,Method="Taubin",ScaleFactor=scaleFactor);
surfaceMeshShow(surfaceMeshOut,Title="Taubin Filter")

3 Functions

3-20

Input Arguments
surfaceMeshIn — Surface mesh to smooth
surfaceMesh object

Surface mesh to smooth, specified as a surfaceMesh object.

numIterations — Number of iterations
numeric scalar

Number of iterations, specified as a numeric scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 smoothSurfaceMesh

3-21

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: surfaceMeshOut =
smoothSurfaceMesh(surfaceMeshIn,numIterations,Method="Laplacian") smooths the
input surface mesh using the Laplacian filter.

Method — Method for smoothing
"Average" (default) | "Laplacian" | "Taubin"

Method for smoothing, specified as "Average", "Laplacian", or "Taubin".

• Average filter — Repeatedly replaces each vertex in the input surface mesh with the mean average
of its neighbors, including itself. The average filter is suitable for surface meshes without any
sharp features.

• Laplacian filter — Repeatedly moves each adjustable vertex to the weighted average of the
vertices adjacent to it. The weights assigned to neighboring vertices depend on their connectivity
with the adjusted vertex. The Laplacian filter is suitable for surface meshes that have various
densities of vertices in different regions.

• Taubin filter — Repeatedly uses two Laplacian filters with scaling factors that have different
magnitudes and signs. Unlike the average and Laplacian filters, the Taubin filter prevents mesh
shrinkage.

Smoothing surface meshes over multiple iterations can result in shrinkage of the original surface
mesh. Thus, the average and Laplacian filters give better results across a small number of iterations.
Increasing the number of iterations can result in surface mesh shrinkage for these methods. The
Taubin filter prevents surface mesh shrinkage, but it requires more iterations than the average and
Laplacian filters to perform a similar level of smoothing.
Data Types: char | string

ScaleFactor — Scale factor for Laplacian and Taubin filters
numeric scalar | two-element numeric vector

Scale factor for the Laplacian and Taubin filters, specified as a numeric scalar or two-element
numeric vector. A large scale factor results in more smoothing of the surface mesh. Specify the scale
factor based on the value of the Method name-value argument.

• "Laplacian" — Specify the scale factor as a scalar in the range (0, 1). The default value for the
scale factor for the Laplacian filter is 0.5.

• "Taubin" — Specify the scale factor as a two-element vector, such that the two scale factors in
the vector satisfy these requirements.

• The absolute values of the scale factors are in the range (0, 1).
• One scale factor is positive and the other is negative.
• The absolute value of the positive scale factor is smaller than the absolute value of the negative

scale factor.

To prevent surface mesh shrinkage, the difference between the absolute values of the positive and
negative scale factors must be small. The default value for the scale factor for the Taubin filter is
[0.5 -0.53].

3 Functions

3-22

Data Types: single | double

SmoothVertexColors — Smooth vertex colors
true or 1 (default) | false or 0

Smooth vertex colors, specified as a logical 1 (true) or 0 (false). Specify SmoothVertexColors as
true to smooth the vertex colors of the surface mesh.
Data Types: logical

Output Arguments
surfaceMeshOut — Smooth surface mesh
surfaceMesh object

Smooth surface mesh, returned as a surfaceMesh object with the same number of vertices and faces
as surfaceMeshIn.

Version History
Introduced in R2023a

See Also
surfaceMesh | readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow | pc2surfacemesh

 smoothSurfaceMesh

3-23

pcsemanticseg
Point cloud semantic segmentation using deep learning

Syntax
C = pcsemanticseg(pc,network)
[C,score,allScores] = pcsemanticseg(pc,network)

plds = pcsemanticseg(ds,network)

[___] = pcsemanticseg(___ ,Name=Value)

Description
C = pcsemanticseg(pc,network) performs the semantic segmentation results on the input point
cloud using deep learning and returns the results.

[C,score,allScores] = pcsemanticseg(pc,network) additionally returns the classification
score score for each predicted label in C and the scores of all the label categories that the network
can classify allScores.

plds = pcsemanticseg(ds,network) returns the semantic segmentation results for a collection
of point clouds in a datastore object ds.

The function supports parallel computing using multiple MATLAB workers. You can enable parallel
computing using the “Computer Vision Toolbox Preferences” dialog box.

[___] = pcsemanticseg(___ ,Name=Value) specifies options using one or more name-value
arguments. For example, OutputType="double" returns the segmentation results as numeric array
of data type double.

Examples

Semantically Segmentat Organized Point Cloud Using Deep Learning

Load a pretrained network into the workspace. This network segments vehicles from the input point
cloud.

data = load("pointCloudVehicleSegmentationNetwork.mat");
net = data.net

net =
 DAGNetwork with properties:

 Layers: [80×1 nnet.cnn.layer.Layer]
 Connections: [87×2 table]
 InputNames: {'Organized-Point-Cloud-Input'}
 OutputNames: {'Loss'}

Load the test point cloud data.

3 Functions

3-24

dataDir = fullfile(toolboxdir("lidar"),"lidardata", ...
 "sampleWPIPointClouds","pointClouds","010.pcd");

Read and display the test point cloud.

ptCloud = pcread(dataDir);
figure
pcshow(ptCloud.Location)

Display the intensity channel of the point cloud.

figure
imshow(uint8(ptCloud.Intensity))

 pcsemanticseg

3-25

Preprocess the point cloud data and perform semantic segmentation.

pc = cat(3,ptCloud.Location,ptCloud.Intensity);
[C,scores] = pcsemanticseg(pc,net);

Overlay the segmentation results on the intensity channel and display the results.

B = labeloverlay(uint8(ptCloud.Intensity),C);
figure
imshow(B)

Evaluate Semantic Segmentation of Point Cloud Test Set

Load a pretrained network into the workspace. This network segments vehicles from the input point
cloud.

data = load("pointCloudVehicleSegmentationNetwork.mat");
net = data.net;

Load the test point cloud data, and create a file datastore.

dataDir = fullfile(toolboxdir("lidar"),"lidardata","sampleWPIPointClouds");
testDataDir = fullfile(dataDir,"pointClouds");
ptCloudDs = fileDatastore(testDataDir,ReadFcn=@pcread);

Concatenate the intensity channel values to the datastore.

pcds = transform(ptCloudDs,@(ptCloud)cat(3,ptCloud.Location,ptCloud.Intensity));

Load the ground truth labels.

3 Functions

3-26

testLabelDir = fullfile(dataDir,"segmentationLabels");
pldsTruth = fileDatastore(testLabelDir,ReadFcn=@(x)load(x).labels);

Perform semantic segmentation on all the test point clouds.

pldsResults = pcsemanticseg(pcds,net,WriteLocation=tempdir);

Running semantic segmentation network

* Processed 10 point clouds.

Compare the results against the ground truth labels.

metrics = evaluateSemanticSegmentation(pldsResults,pldsTruth)

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 10 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.94751 0.9723 0.67226 0.92655 0.47675

metrics =
 semanticSegmentationMetrics with properties:

 ConfusionMatrix: [2×2 table]
 NormalizedConfusionMatrix: [2×2 table]
 DataSetMetrics: [1×5 table]
 ClassMetrics: [2×3 table]
 ImageMetrics: [10×5 table]

Input Arguments
pc — Input point cloud
numeric matrix | 3-D numeric array | 4-D numeric array

Input point cloud, specified as one of these options.

Point Cloud Type Data Format
Unorganized point cloud Numeric matrix of size M-by-K, where M is the number of points in

the point cloud, and K is the number of channels, such as intensity
and color.

Array of unorganized point
clouds

3-D numeric array of size M-by-K-by-P, where P is the number of
point clouds.

Organized point cloud 3-D numeric array of size M-by-N-by-K, where M and N are the
rows and columns in the point cloud, respectively, and K is the
number of channels, such as intensity and color.

 pcsemanticseg

3-27

Point Cloud Type Data Format
Array of organized point clouds 4-D numeric array of size M-by-N-by-K-by-P, where P is the number

of point clouds.

The input point cloud can also be a gpuArray that contains one of the point cloud types listed in the
table (requires Parallel Computing Toolbox).
Data Types: double | single

network — Network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

ds — Collection of point clouds
datastore object

Collection of point clouds, specified as a datastore object. The read function of the datastore must
return a numeric array or cell array. For a cell array, the data in each cell must be a numeric array.
For cell arrays with multiple columns, the function processes only the first column.

For more information, see “Datastores for Deep Learning” (Deep Learning Toolbox).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: pcsemanticseg(pc,network,OutputType="double") returns the segmentation
results as numeric array of data type double.

OutputType — Returned segmentation type
"categorical" (default) | "double" | "uint8"

Returned segmentation type, specified as "categorical", "double", or "uint8".

When you specify this value as "categorical", the function returns the segmentation labels as a
categorical array.

When you specify this value as "double" or "uint8", the function returns the segmentation results
as a numeric array of the corresponding data type containing label IDs. The IDs are integer values
corresponding to the class names defined in the classification layer of the input network.

Note You cannot use the OutputType argument with a datastore input.

Data Types: char | string

MiniBatchSize — Size of point cloud groups
32 (default) | positive integer

Size of the point cloud groups, specified as an integer. For a large collection of point clouds, the
function groups and processes the point clouds together as a batch. Increasing the MiniBatchSize
value improves the computational efficiency, but requires more memory.

3 Functions

3-28

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource for processing the point clouds, specified as "auto", "gpu", or "cpu".

Execution Environment Description
"auto" Use a GPU, if available. Otherwise, use the CPU. Using a GPU

requires Parallel Computing Toolbox and a CUDA-enabled
NVIDIA GPU. For information about the supported
capabilities, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

"gpu" Use the GPU. If a suitable GPU is not available, the function
returns an error message.

"cpu" Use the CPU.

Data Types: char | string

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as "auto", "mex", or "none".

Acceleration Description
"auto" Automatically apply a number of optimizations suitable for

the input network and hardware resource.

This is the default option. MATLAB does not generate a MEX
function with this option.

"none" Disable all acceleration.

"auto" option can offer performance benefits, but at the expense of an increased initial run time.
Subsequent calls with compatible parameters are faster. Use performance optimization when you
plan to call the function multiple times using new input data.
Data Types: char | string

Classes — Classes into which points are classified
"auto" (default) | cell array of character vectors | vector of strings | categorical vector

Classes into which points are classified, specified as "auto", a cell array of character vectors, a
vector of strings, or a categorical vector. If the value is a categorical vector, Y, then the function sorts
and orders the elements of the vector according to categories(Y).

If the network is a dlnetwork object, then the number of classes specified by Classes must match
the number of channels in the output of the network predictions. By default, when the value of
Classes is "auto", the function numbers the classes from 1 through K, where K is the number of
channels in the output layer of the network.

If the network is a SeriesNetwork or DAGNetwork object, then the number of classes specified by
Classes must match the number of classes in the classification output layer. By default, when the

 pcsemanticseg

3-29

value of Classes is "auto", the function sets the classes automatically using the classification
output layer.

WriteLocation — Folder to write to
pwd (default) | string scalar | character vector

Folder to write to, specified as pwd, a string scalar, or a character vector. The specified folder must
exist and have write permissions.

Note This argument is applicable only when you specify the input point clouds using a datastore.

Data Types: char | string

NamePrefix — Prefix for output file names
"pointLabel" (default) | string scalar | character vector

Prefix for the output file names, specified as a string scalar or character vector. The function returns
the point cloud files as:

• NamePrefix_N.png, where N is the index of the corresponding point cloud file in
pointCloudDs.Files.

Note This argument is applicable only when you specify the input point clouds using a datastore.

Data Types: char | string

Verbose — Display progress information
true or 1 (default) | false or 0

Display progress information, specified as logical 1 (true) or 0 (false).

Note This argument is applicable only when you specify the input point clouds using a datastore.

Data Types: logical

UseParallel — Run parallel computations
false or 0 (default) | true or 1

Run parallel computations, specified as a logical 1 (true) or 0 (false).

To run in parallel, set UseParallel to true, or enable this by default using the Computer Vision
Toolbox™ preferences.

For more information, see “Parallel Computing Toolbox Support”.

Note This argument is applicable only when you specify the input point clouds using a datastore.

Data Types: logical

3 Functions

3-30

Output Arguments
C — Segmentation labels
categorical vector | categorical matrix | categorical array

Segmentation labels, returned as a categorical array. The argument contains labels for all points in
the input point cloud.

Input Point Cloud Semantic Labels
Unorganized point cloud Numeric vector with M elements. Element C(i) is the categorical

label assigned to the point pc(i) in the input point cloud.
Array of unorganized point
clouds

Numeric matrix of size M-by-P. Element C(i,k) is the categorical
label assigned to the ith point in the kth point cloud of the point
cloud array.

Organized point cloud Numeric matrix of size M-by-N. Element C(i,j) is the categorical
label assigned to the point pc(i,j) in the input point cloud.

Array of organized point clouds 3-D numeric array of size M-by-N-by-P. Element C(i,j,k) is the
categorical label assigned to the point pc(i,j) in the kth point cloud
of the input point cloud array.

score — Confidence scores
numeric vector | numeric matrix | numeric array

Confidence scores for each categorical label in C, returned as a vector, matrix, or array of values
between 0 and 1. The scores represents the confidence in the corresponding predicted label in C.
Higher score values indicate a higher confidence in the predicted label.

Input Point Cloud Semantic Labels
Unorganized point cloud Numeric vector with M elements. Element score(i) is the score

assigned to the point pc(i) in the input point cloud.
Array of unorganized point
clouds

Numeric matrix of size M-by-P. Element score(i,k) is the score
assigned to the ith point in the kth point cloud of the point cloud
array.

Organized point cloud Numeric matrix of size M-by-N. Element score(i,j) is the score
assigned to the point pc(i,j) in the input point cloud.

Array of organized point clouds 3-D numeric array of size M-by-N-by-P. Element score(i,j,k) is the
score assigned to the point pc(i,j) in the kth point cloud of the input
point cloud array.

allScores — Scores for all label categories
numeric matrix | 3-D numeric array | 4-D numeric array

Scores for all label categories the input network can classify, returned as a numeric array.

This table shows the format of this output for each type of point cloud input. L is the total number of
label categories.

 pcsemanticseg

3-31

Input Point Cloud Semantic Labels
Unorganized point cloud Numeric matrix of size M-by-L. Element allScores(i,q) is the

score of the qth label at the point pc(i) in the input point cloud.
Array of unorganized point
clouds

3-D numeric array of size M-by-L-by-P. Element allScores(i,q,k)
is the score of the qth label at the point pc(i) in the kth point cloud
of the point cloud array.

Organized point cloud 3-D numeric array of size M-by-N-by-L. Element allScores(i,j,q)
is the score of the qth label at the point pc(i,j) in the input point
cloud.

Array of organized point clouds 4-D numeric array of size M-by-N-by-L-by-P. Element
allScores(i,j,q,k) is the score of the qth label at the point pc(i, j)
in the kth point cloud of the input point cloud array.

plds — Semantic segmentation results
fileDatastore object

Semantic segmentation results, returned as a fileDatastore object. The function saves the
segmentation result of each point cloud as a MAT file. You can use the read function on this output to
obtain the categorical labels for the point clouds in ds.

Version History
Introduced in R2022b

See Also
semanticseg | segmentAerialLidarVegetation | segmentAerialLidarBuildings |
evaluateSemanticSegmentation | squeezesegv2Layers | pointnetplusLayers |
pointCloudInputLayer

Topics
“Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”
“Getting Started with Point Clouds Using Deep Learning”
“List of Deep Learning Layers” (Deep Learning Toolbox)
“Datastores for Deep Learning” (Deep Learning Toolbox)

3 Functions

3-32

segmentAerialLidarBuildings
Segment building points from aerial lidar data

Syntax
buildingPtsIdx = segmentAerialLidarBuildings(ptCloud)
[buildingPtsIdx,nonBuildingPtCloud,buildingPtCloud] =
segmentAerialLidarBuildings(ptCloud)
[___] = segmentAerialLidarBuildings(___ ,ExecutionEnvironment=env)

Description
buildingPtsIdx = segmentAerialLidarBuildings(ptCloud) segments the building points
and non-building points from the input unorganized point cloud ptCloud using a pretrained PointNet
++ model and returns the building point indices..

Note

• The input point cloud dimensions must be in meters.
• This function requires Deep Learning Toolbox™.

[buildingPtsIdx,nonBuildingPtCloud,buildingPtCloud] =
segmentAerialLidarBuildings(ptCloud) additionally returns the building points and non-
building points as individual pointCloud objects.

[___] = segmentAerialLidarBuildings(___ ,ExecutionEnvironment=env) specifies the
execution environment for the function in addition to any combination of arguments from previous
syntaxes.

Examples

Segment Buildings from Aerial Lidar Data

Specify a LAZ file that contains aerial lidar data.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");

Read point cloud data from the LAZ file into the workspace.

lasReader = lasFileReader(fileName);
ptCloud = readPointCloud(lasReader);

Segment the building points from the point cloud.

[~,nonBuildingPtCloud,buildingPtCloud] = segmentAerialLidarBuildings(ptCloud);

Visualize the building and non-building points.

 segmentAerialLidarBuildings

3-33

figure
pcshowpair(buildingPtCloud,nonBuildingPtCloud)

Input Arguments
ptCloud — Unorganized point cloud
pointCloud object

Unorganized point cloud data, specified as a pointCloud object.

env — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource to use to process the point cloud, specified as one of these options.

• "auto" — Use a GPU if available. Otherwise, use the CPU. The use of a GPU requires Parallel
Computing Toolbox and a CUDA-enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

• "gpu" — The function runs on a GPU. If a suitable GPU is not available, the function returns an
error message.

• "cpu" — The function runs on a CPU.

Data Types: char | string

3 Functions

3-34

Output Arguments
buildingPtsIdx — Binary map of segmented point cloud
M-element logical vector

Binary map of the segmented point cloud, returned as an M-element logical vector. Elements that
correspond to building points in the point cloud are true, and non-building points are false.

nonBuildingPtCloud — Point cloud of non-building points
pointCloud object

Point cloud of non-building points, returned as a pointCloud object.

buildingPtCloud — Point cloud of building points
pointCloud object

Point cloud of building points, returned as a pointCloud object.

Version History
Introduced in R2022b

See Also
pcsemanticseg | segmentAerialLidarVegetation | segmentGroundSMRF |
segmentLidarData

 segmentAerialLidarBuildings

3-35

segmentAerialLidarVegetation
Segment vegetation points from aerial lidar data

Syntax
vegetationPtsIdx = segmentAerialLidarVegetation(ptCloud)
[vegetationPtsIdx,nonVegetationPtCloud,vegetationPtCloud] =
segmentAerialLidarVegetation(ptCloud)
[___] = segmentAerialLidarVegetation(___ ,ExecutionEnvironment=env)

Description
vegetationPtsIdx = segmentAerialLidarVegetation(ptCloud) segments the vegetation
points and non-vegetation points from the input unorganized point cloud ptCloud using a pretrained
PointNet++ model and returns the building point indices.

Note

• The input point cloud dimensions must be in meters.
• This function requires Deep Learning Toolbox.

[vegetationPtsIdx,nonVegetationPtCloud,vegetationPtCloud] =
segmentAerialLidarVegetation(ptCloud) additionally returns the vegetation points and non-
vegetation points as individual pointCloud objects.

[___] = segmentAerialLidarVegetation(___ ,ExecutionEnvironment=env) specifies the
execution environment for the function in addition to any combination of arguments from previous
syntaxes.

Examples

Segment Vegetation from Aerial Lidar Data

Specify a LAZ file that contains aerial lidar data.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");

Read point cloud data from the LAZ file into the workspace.

lasReader = lasFileReader(fileName);
ptCloud = readPointCloud(lasReader);

Segment the vegetation points from the point cloud.

[~,nonVegetationPtCloud,vegetationPtCloud] = segmentAerialLidarVegetation(ptCloud);

Visualize the vegetation and non-vegetation points.

3 Functions

3-36

figure
pcshowpair(vegetationPtCloud,nonVegetationPtCloud)

Input Arguments
ptCloud — Unorganized point cloud
pointCloud object

Unorganized point cloud data, specified as a pointCloud object.

env — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource to use to process the point cloud, specified as one of these options.

• "auto" — Use a GPU if available. Otherwise, use the CPU. The use of a GPU requires Parallel
Computing Toolbox and a CUDA-enabled NVIDIA GPU. For information about the supported
compute capabilities, see “GPU Computing Requirements” (Parallel Computing Toolbox).

• "gpu" — The function uses a GPU. If a suitable GPU is not available, the function returns an error
message.

• "cpu" — The function uses a CPU.

Data Types: char | string

 segmentAerialLidarVegetation

3-37

Output Arguments
vegetationPtsIdx — Binary map of segmented point cloud
logical vector

Binary map of the segmented point cloud, returned as an M-element logical vector. Elements that
correspond to vegetation points in the point cloud are true, and non-vegetation points are false.

nonVegetationPtCloud — Point cloud of non-vegetation points
pointCloud object

Point cloud of non-vegetation points, returned as a pointCloud object.

vegetationPtCloud — Point cloud of vegetation points
pointCloud object

Point cloud of vegetation points, returned as a pointCloud object.

Version History
Introduced in R2022b

See Also
pcsemanticseg | segmentAerialLidarBuildings | segmentGroundSMRF | segmentLidarData

3 Functions

3-38

pcregisterfgr
Register two point clouds using FGR algorithm

Syntax
tform = pcregisterfgr(moving,fixed,gridSize)
[tform,rmse] = pcregisterfgr(moving,fixed,gridSize)
[___] = pcregisterfgr(___ ,MaxIterations=numIterations)

Description
tform = pcregisterfgr(moving,fixed,gridSize) returns a rigid transformation that
registers a moving point cloud to a fixed point cloud.

The function registers points using a fast global registration (FGR) algorithm based on FPFH
features.

[tform,rmse] = pcregisterfgr(moving,fixed,gridSize) additionally returns the root mean
square error of the Euclidean distance between the inlier aligned points.

[___] = pcregisterfgr(___ ,MaxIterations=numIterations) specifies the maximum
number of iterations for the FGR algorithm, in addition to any combination of arguments from
previous syntaxes.

Examples

Align Two Point Clouds Using FGR Algorithm

Load point cloud data into the workspace.

ld = load("livingRoom.mat");
fixed = ld.livingRoomData{1};
moving = ld.livingRoomData{2};

To improve the efficiency and the accuracy of the FGR registration algorithm, downsample the point
clouds. Display the point clouds.

fixedDownsampled = pcdownsample(fixed,gridAverage=0.05);
movingDownsampled = pcdownsample(moving,gridAverage=0.05);
pcshowpair(moving,fixed,VerticalAxis="Y",VerticalAxisDir="Down")

 pcregisterfgr

3-39

Perform registration using the FGR algorithm.

gridSize = 0.1;
[tform,rmse] = pcregisterfgr(movingDownsampled,fixedDownsampled, ...
 gridSize,MaxIterations=100);

Visualize the alignment.

movingRegistered = pctransform(moving,tform);
pcshowpair(movingRegistered,fixed,VerticalAxis="Y",VerticalAxisDir="Down");

3 Functions

3-40

Merge the point clouds and visualize the merged result.

mergeSize = 0.01;
merged = pcmerge(movingRegistered,fixed,mergeSize);
figure(Name = "merged point cloud after Fast Global registration");
pcshow(merged,VerticalAxis="Y",VerticalAxisDir ="Down");

 pcregisterfgr

3-41

Input Arguments
moving — Moving point cloud
pointCloud object

Moving point cloud, specified as a pointCloud object.

fixed — Fixed point cloud
pointCloud object

Fixed point cloud, specified as a pointCloud object.

gridSize — Grid size to search for correspondence between point clouds
positive scalar

Grid size to search for correspondence between the point clouds, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numIterations — Maximum number of iterations
64 (default) | positive integer

Maximum number of iterations before the FGR algorithm stops, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

3 Functions

3-42

Output Arguments
tform — Rigid transformation
rigidtform3d object

Rigid transformation, returned as a rigidtform3d object. The rigid transformation registers a
moving point cloud to a fixed point cloud. The rigidtform3d object describes the rigid 3-D
transform. The FGR algorithm estimates the rigid transformation between the moving and fixed point
clouds.

rmse — Root mean square error
positive scalar

Root mean square error, returned as a positive scalar that represents the Euclidean distance between
the inlier aligned points. A lower error values indicates a better registration.

Tips
• To improve the accuracy and the efficiency of registration, downsample the point clouds using the

pcdownsample function before using the pcregisterfgr function.
• For ground vehicle point clouds, you can improve performance and accuracy by removing the

ground using pcfitplane or segmentGroundFromLidarData before registration. For details
on how to do this, see the helperProcessPointCloud function in the “Build a Map from Lidar
Data” (Automated Driving Toolbox) example.

• To merge more than two point clouds, you can use the pccat function instead of the pcmerge
function.

Algorithms
This figure shows the workflow of point cloud registration using the FGR algorithm.

 pcregisterfgr

3-43

3 Functions

3-44

Version History
Introduced in R2022b

See Also
Functions
pcregistericp | pcregisterndt | pcregistercpd | pctransform | pcshow | pcdownsample |
pcfitplane | pcdenoise | pcmerge

Objects
pointCloud | rigidtform3d

Topics
“3-D Point Cloud Registration and Stitching”
“Implement Point Cloud SLAM in MATLAB”

 pcregisterfgr

3-45

surfaceMeshShow
Display surface mesh

Syntax
surfaceMeshShow(surfaceMeshObj)
surfaceMeshShow(triangulationObj)
surfaceMeshShow(vertices,faces)
surfaceMeshShow(___ ,Name=Value)

Description
surfaceMeshShow(surfaceMeshObj) displays the surface mesh specified by the surfaceMesh
object surfaceMeshObj.

surfaceMeshShow(triangulationObj) displays the surface mesh specified by the
triangulation object.

surfaceMeshShow(vertices,faces) displays the surface mesh defined by the input vertices and
faces.

surfaceMeshShow(___ ,Name=Value) specifies options using one or more name-value arguments
in addition to any combination of arguments from previous syntaxes. For example, Title="Cuboid"
displays the surface mesh with the title "Cuboid".

Examples

Display Surface Mesh Using surfaceMesh Object

Define the mesh vertices and faces for a surface mesh.

vertices = [0 0 0; 0 0 1; 0 1 1; 0 0 2; 1 0.5 1];
faces = [1 2 3; 2 3 4; 2 3 5];

Create a surfaceMesh object using vertices and faces.

mesh = surfaceMesh(vertices,faces);

Display the surface mesh.

surfaceMeshShow(mesh,Title="Surface Mesh",ColorMap="hot",BackgroundColor="blue")

Display Surface Mesh Using triangulation Object

Create a triangulation object that represents a 3-D triangulation.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);

3 Functions

3-46

z = peaks(15);
triangulationObject = triangulation(tri,x(:),y(:),z(:));

Display the surface mesh defined by the triangulation.

surfaceMeshShow(triangulationObject,ColorMap="summer",Title="Triangulation Obj Mesh")

Input Arguments
surfaceMeshObj — Surface mesh data
surfaceMesh object

Surface mesh data, specified as a surfaceMesh object.

triangulationObj — Triangulation of surface mesh
triangulation object

Triangulation of surface mesh, specified as a triangulation object.

vertices — Mesh vertices
M-by-3 matrix

Mesh vertices, specified as an M-by-3 matrix. Each row of the matrix is of the form [x y z],
specifying the coordinates of a vertex. Each vertex has a vertex ID equal to its row number in the
matrix. M is the total number of vertices.

faces — Mesh triangular faces
N-by-3 matrix

Mesh triangular faces, specified as an N-by-3 matrix. Each row of the matrix is of the form [V1 V2
V3], specifying the vertex IDs of the vertices that define the triangular face. N is the number of faces.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: surfaceMeshShow(mesh,Title="Cuboid") displays the surface mesh with the title
"Cuboid".

ColorMap — Colormap for surface mesh
'parula' (default) | character vector | string scalar

Colormap for the surface mesh, specified as one of these options.

• parula
• turbo
• hsv
• hot
• cool
• spring

 surfaceMeshShow

3-47

• summer
• autumn
• winter
• gray
• bone
• copper
• pink
• jet
• lines
• colorcube
• prism
• flag
• white

For more information, see colormap.

BackgroundColor — Background color
[0 0 0] (default) | RGB triplet | hexadecimal color code | color name | short color name

Background color for the surface mesh, specified as one of these options.

• RGB Triplet — A three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• Hexadecimal Color Code — A character vector or a string scalar that starts with a hash symbol
(#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not
case sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are
equivalent.

• Color Name or Short Name — Specify the name of a color such as 'red' or 'green'. Short
names specify a letter from a color name, such as 'r' or 'g'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal Color Code
"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

3 Functions

3-48

Alpha — Transparency of surface mesh
1 (default) | positive scalar in range [0, 1]

Transparency of the surface mesh, specified as a positive scalar in the range [0, 1]. A value of 1 is
fully opaque, 0 is completely transparent, and values in between them are semitransparent.
Data Types: single | double

WireFrame — Display mesh surface as wireframe
false (default) | true

Display the mesh surface as a wireframe, specified as a logical true or false. When set to true, the
function displays the mesh surfaces as a wireframe. Otherwise, the surface has a solid fill.
Data Types: logical

VerticesOnly — Display only mesh vertices
false (default) | true

Display only mesh vertices, specified as a logical true or false. When set to true, the function
displays only the mesh vertices.
Data Types: logical

Title — Title for surface mesh display
" " (default) | character vector | string scalar

Title for the surface mesh display, specified as a character vector or string scalar. This value is empty
by default.
Data Types: char | string

Limitations
The surfaceMeshShow function does not display mesh face colors specified by the FaceColors
property of the input surfaceMesh object.

You cannot save the output by using the savefig function.

To use functions such as plot after the surfaceMeshShow function, you must create a new figure
window. The surfaceMeshShow function cannot create figures.

Version History
Introduced in R2022b

See Also
surfaceMesh | readSurfaceMesh | writeSurfaceMesh

 surfaceMeshShow

3-49

readSurfaceMesh
Read 3-D surface mesh data from STL or PLY file

Syntax
mesh = readSurfaceMesh(fileName)

Description
mesh = readSurfaceMesh(fileName) reads surface mesh data from an STL or a PLY file with the
specified filename and returns it as a surfaceMesh object.

Examples

Read Surface Mesh from PLY File

Specify a PLY file from which to read surface mesh data.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
"surfaceMesh","sphere.ply");

Read surface mesh data from the PLY file into the workspace.

mesh = readSurfaceMesh(fileName)

mesh =
 surfaceMesh with properties:

 Vertices: [482x3 double]
 Faces: [956x3 int32]
 VertexNormals: [482x3 double]
 VertexColors: []
 FaceNormals: []
 FaceColors: []
 NumVertices: 482
 NumFaces: 956

Dispaly the surface mesh.

surfaceMeshShow(mesh)

Read Surface Mesh from STL file

Specify an STL file from which to read surface mesh data.

fileName = fullfile(toolboxdir("lidar"),"lidardata", ...
"surfaceMesh","mobius.stl");

3 Functions

3-50

Read surface mesh data from the STL file into the workspace.

mesh = readSurfaceMesh(fileName)

mesh =
 surfaceMesh with properties:

 Vertices: [1050x3 double]
 Faces: [1960x3 int32]
 VertexNormals: []
 VertexColors: []
 FaceNormals: [1960x3 double]
 FaceColors: []
 NumVertices: 1050
 NumFaces: 1960

Dispaly the surface mesh.

surfaceMeshShow(mesh)

Input Arguments
fileName — Filename to read surface mesh data
character vector | string scalar

Filename to read surface mesh data, specified as a character vector or string scalar. You must specify
the file extension .stl or .ply with the filename. If the file is not in your working folder you must
specify the full file path.
Data Types: char | string

Output Arguments
mesh — Surface mesh data from STL or PLY file
surfaceMesh object

Surface mesh data from an STL or a PLY file, returned as a surfaceMesh object.

Limitations
You cannot read these attributes from an STL file.

• Vertex normals
• Vertex colors
• Face colors

You cannot read face colors from a PLY file.

Version History
Introduced in R2022b

 readSurfaceMesh

3-51

See Also
surfaceMesh | pc2surfacemesh | writeSurfaceMesh | surfaceMeshShow

3 Functions

3-52

writeSurfaceMesh
Write 3-D surface mesh into STL or PLY file

Syntax
writeSurfaceMesh(mesh,fileName)
writeSurfaceMesh(mesh,fileName,Encoding=enc)

Description
writeSurfaceMesh(mesh,fileName) writes the surface mesh mesh into an STL or PLY file with
the specified filename.

writeSurfaceMesh(mesh,fileName,Encoding=enc) additionally specifies the encoding type as
"ascii" or "binary".

Examples

Write Surface Mesh Data into STL and PLY File

Define mesh vertices and faces for a surface mesh.

vertices = [0 0 0; 0 0 1; 0 1 1; 0 0 2; 1 0.5 1];
faces = [1 2 3; 2 3 4; 2 3 5];

Create and display the surface mesh.

mesh = surfaceMesh(vertices,faces);
surfaceMeshShow(mesh)

Write the surface mesh data into an STL file.

writeSurfaceMesh(mesh,"ManifoldMesh.stl")

Write the surface mesh data into a PLY file.

writeSurfaceMesh(mesh,"ManifoldMesh.ply")

Input Arguments
mesh — Surface mesh to write
surfaceMesh object

Surface mesh to write, specified as a surfaceMesh object.

fileName — Filename to write surface mesh data to
character vector | string scalar

 writeSurfaceMesh

3-53

Filename to write surface mesh data to, specified as a character vector or string scalar. You must
specify the .stl or .ply extension along with the filename. If a file of specified name already exists,
it must have write permissions.

enc — Encoding type
"ascii" (default) | "binary"

Encoding type in which to write surface mesh data to the file, specified as "ascii" or "binary".
Data Types: char | string

Limitations
You cannot write these attributes into an STL file.

• Vertex normals
• Vertex colors
• Face colors

You cannot write face normals and face colors into a PLY file.

Version History
Introduced in R2022b

See Also
surfaceMesh | pc2surfacemesh | readSurfaceMesh | surfaceMeshShow

3 Functions

3-54

pc2surfacemesh
Construct surface mesh from 3-D point cloud

Syntax
[mesh,depth,perVertexDensity] = pc2surfacemesh(ptCloudIn,"poisson")
[mesh,depth,perVertexDensity] = pc2surfacemesh(ptCloudIn,'poisson',
inputDepth)

[mesh,radii] = pc2surfacemesh(ptCloudIn,"ball-pivot")
[mesh,radii] = pc2surfacemesh(ptCloudIn,'ball-pivot',inputRadii)

Description
[mesh,depth,perVertexDensity] = pc2surfacemesh(ptCloudIn,"poisson") creates a
surface mesh from the input point cloud ptCloudIn using the Poisson reconstruction method. The
function also returns the octree depth used in the reconstruction depth and the vertex density
perVertexDensity.

[mesh,depth,perVertexDensity] = pc2surfacemesh(ptCloudIn,'poisson',
inputDepth) additionally specifies the octree depth value for the Poisson reconstruction method.

[mesh,radii] = pc2surfacemesh(ptCloudIn,"ball-pivot") constructs a surface mesh from
point cloud data using the ball-pivot method. The function also returns the radii used in the
reconstruction.

[mesh,radii] = pc2surfacemesh(ptCloudIn,'ball-pivot',inputRadii) additionally
specifies the radii for the ball-pivot reconstruction method.

Examples

Construct Surface Mesh from Point Cloud Using Poisson Method

Load point cloud data from a PLY file into the workspace.

ptCloud = pcread("teapot.ply");

Display the input point cloud.

pcshow(ptCloud)

 pc2surfacemesh

3-55

Downsample the point cloud.

gridstep = 0.05;
ptCloudDownSampled = pcdownsample(ptCloud,"gridAverage",gridstep);

Construct surface mesh from the point cloud data using the Poisson method, and display the surface
mesh.

depth = 8;
mesh = pc2surfacemesh(ptCloudDownSampled,"poisson",depth);
surfaceMeshShow(mesh)

Construct Surface Mesh from Point Cloud Using Ball-Pivot Method

Load point cloud data from a PLY file into the workspace.

ptCloud = pcread("teapot.ply");

Display the input point cloud.

pcshow(ptCloud)

3 Functions

3-56

Downsample the point cloud.

gridstep = 0.05;
ptCloudDownSampled = pcdownsample(ptCloud,"gridAverage",gridstep);

Construct a surface mesh from the point cloud data using the ball-pivot method and display the
surface mesh.

mesh = pc2surfacemesh(ptCloudDownSampled,"ball-pivot");
surfaceMeshShow(mesh)

Input Arguments
ptCloudIn — Input point cloud data
pointCloud object

Input point cloud data, specified as a pointCloud object.

inputDepth — Octree depth to use in Poisson reconstruction
8 (default) | positive integer

Octree depth to use in Poisson reconstruction, specified as a positive integer in the range [2, 12].
Increasing the octree depth of the Poisson reconstruction increase the detail of the surface mesh.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 pc2surfacemesh

3-57

inputRadii — Radii values for ball-pivot reconstruction
M-element vector

Radii values for ball-pivot reconstruction, specified as an M-element vector. You must specify the
values depending on the point cloud density. Values are in meters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
mesh — Surface mesh constructed from point cloud
surfaceMesh object

Surface mesh constructed from the point cloud, returned as a surfaceMesh object.

depth — Octree depth used in Poisson reconstruction
positive integer

Octree depth used in the Poisson reconstruction, returned as a positive integer.

radii — Radii values for ball-pivot reconstruction
three-element vector

Radii values for the ball-pivot reconstruction, returned as a three-element vector. Units are in meters.

perVertexDensity — Density at mesh vertices
M-element vector

Density at mesh vertices, returned as an M-element vector. M is the number of mesh vertices in the
output surface mesh. You can further refine the mesh by eliminating vertices with insignificant
density.

Algorithms
Poisson Reconstruction

The Poisson reconstruction method consists of these steps.

1 Transform the point samples into a continuous vector field.
2 Solve a Poisson system, containing 3-D Laplacian equations, to find a function whose gradient

best describes the point cloud.
3 Reconstruct the surface from the function equation.

Ball-Pivot Reconstruction

The ball-pivot method triangulates a set of points by rolling a ball, of radius r, on the point cloud. The
algorithm consists of these steps.

1 Place the ball in contact with three sample points. These points form the seed triangle.
2 Keep the ball in contact with two of these initial points (an edge of the seed triangle) and pivot

the ball until it touches another point. The edge and the new point define a new triangle.

3 Functions

3-58

3 Pivot the ball using the new triangle edge. Using an edge of the new triangle, repeat the process
of pivoting and defining a new triangle with a touched point. The triangles formed through this
process constitute the interpolating mesh.

4 Continue this process until all reachable edges are covered, and then start with another seed
triangle.

5 Repeat the entire process with larger radii to reconstruct uneven surfaces.

Version History
Introduced in R2022b

See Also
surfaceMesh | readSurfaceMesh | writeSurfaceMesh | surfaceMeshShow

 pc2surfacemesh

3-59

segmentCurbPoints
Segment curb points from point cloud

Syntax
curbPtsIdx = segmentCurbPoints(onRoadPointCloud)
curbPtsIdx = segmentCurbPoints(onRoadPointCloud,roadAngles)
curbPtsIdx = segmentCurbPoints(onRoadPointCloud,roadAngles,prevCurbPoints)
[curbPtsIdx,curbPtCloud] = segmentCurbPoints(___)
[___] = segmentCurbPoints(___ ,Name=Value)

Description
curbPtsIdx = segmentCurbPoints(onRoadPointCloud) segments the indices of the feature
curb points from an organized point cloud which contains on-road points. A curb usually defines the
road boundary, and forms an edge for the sidewalk.

curbPtsIdx = segmentCurbPoints(onRoadPointCloud,roadAngles) specifies the road
angles. The function further processes the feature curb points using these road angles and returns
the candidate curb points.

curbPtsIdx = segmentCurbPoints(onRoadPointCloud,roadAngles,prevCurbPoints)
specifies the curb points segmented from the previous point cloud frames. The function uses the
previous curb points to improve robustness when the input point cloud has occlusions.

[curbPtsIdx,curbPtCloud] = segmentCurbPoints(___) returns the segmented curb points
in the on-road point cloud as a pointCloud object, using any combination of input arguments from
previous syntaxes.

[___] = segmentCurbPoints(___ ,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of arguments from previous syntaxes. For example,
HeightLimits=[0.1 0.3] specifies the minimum and the maximum height of the road curb as 0.1
and 0.3 meters, respectively.

Examples

Segment Curb Points from Point Cloud

Read point cloud data from a PCD file by using the pcread function.

ptCloud = pcread("HDL64LidarData.pcd");

Organize the point cloud data by using the pcorganize function.

ptCloud = pcorganize(ptCloud,lidarParameters("HDL64E",1024));

Extract a region of interest, which contains a road, from the point cloud data.

3 Functions

3-60

roi = [-25 25 -10 24 ptCloud.ZLimits];
indices = findPointsInROI(ptCloud,roi);
ptCloud = select(ptCloud,indices,OutputSize="full");

Segment the on-road and off-road points from the point cloud by using the segmentGroundSMRF
function.

[~,offRoadPtCloud,onRoadPtCloud] = segmentGroundSMRF(ptCloud);

Detect road angles from the off-road points.

roadAngles = detectRoadAngles(offRoadPtCloud,MinSectorSize=10,SectorMergeThreshold=30);

Segment curb points from the on-road points of the point cloud.

[~,curbPtCloud] = segmentCurbPoints(onRoadPtCloud,roadAngles,NumScanNeighbors=10, ...
 HeightLimits=[0.001 0.5],HeightDeviationLimits=[0.001 0.5], ...
 SmoothnessThreshold=0.0001,HorizontalAngularResolution=0.33);

Visualize the segmented curb points.

figure
pcshow(ptCloud.Location,"w")
hold on;
pcshow(curbPtCloud.Location,"r",MarkerSize=200)
hold off
view(2)
title("Curb points")

 segmentCurbPoints

3-61

Input Arguments
onRoadPointCloud — Organized point cloud with on-road points
pointCloud object

Organized point cloud with on-road points, specified as a pointCloud object. The on-road area
consists of sidewalks, curb surfaces, and road surfaces. You can apply ground segmentation or plane-
fitting algorithms to your point cloud data to extract on-road points. For more details, see “Extract
On-Road and Off-Road Points from Point Cloud”.

roadAngles — Road segmentation angles
M-element vector

Road segmentation angles, specified as an M-element vector. The value of M depends on the road
type.

Road Type M Value
Straight or curved road 2
T-shaped or Y-shaped road 3
Cross-road (+) 4
6-way junction 6

You can compute road angles by using the detectRoadAngles function or input them manually to
the function.

When you specify the road angles, the function processes the feature curb points using RANSAC
polynomial fitting to return the candidate curb points.

prevCurbPoints — Segmented curb points from previous point cloud frames
pointCloud object | array of pointCloud objects

Segmented curb points from the previous point cloud frames, specified as a pointCloud object or an
array of pointCloud objects. These point clouds must be in the onRoadPointCloud frame of
reference. Detections from the previous frames can improve the robustness of the function when the
input point cloud has occlusions.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: segmentCurbPoints(onRoadPtCloud,HeightLimits=[0.1 0.3]) specifies the
minimum and the maximum height of the road curb as 0.1 and 0.3 meters, respectively.

NumScanNeighbors — Number of neighbors for each point in a scan line
5 (default) | positive integer

Number of left and right neighbors for each point in a scan line, specified as a positive integer.
Increasing this value can improve the accuracy of curb segmentation.

3 Functions

3-62

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | ete | uint16 | uint32 |
uint64

HeightLimits — Height difference limits for road curb
[0.02 0.25] (default) | two-element nonnegative vector

Height limits for the road curb, specified as a two-element nonnegative vector of the form [min max].
The min, max values specify the minimum and the maximum height of the road curb, respectively.
The typical range of the minimum height is [0.001, 0.05], and the typical range of the maximum
height is [0.15, 0.5]. The values are in meters.
Data Types: single | double

HeightDeviationLimits — Minimum and maximum standard deviation in curb height
[0.02 0.07] (default) | two-element nonnegative vector

Minimum and maximum standard deviation in the curb height, specified as a two-element
nonnegative vector of the form [min max]. The min, max values specify the minimum and the
maximum standard deviation in the curb height, respectively.
Data Types: single | double

SmoothnessThreshold — Minimum smoothness value for curb points
0.001 (default) | positive scalar

Minimum smoothness value for curb points, specified as a positive scalar. The typical range of this
value is (0, 0.005]. Increasing this value can decrease the number of curb points segmented.
Data Types: single | double

HorizontalAngularResolution — Horizontal angular resolution of lidar sensor
positive scalar

Horizontal angular resolution of the lidar sensor, specified as a positive scalar in degrees. When you
do not specify this value, the function internally computes it as 360/
(size(onRoadPointCloud.Location,2)). The typical range for horizontal angular resolution is
[0.1, 0.4]. Increasing this value can decrease the number of curb points segmented.
Data Types: single | double

Output Arguments
curbPtsIdx — Indices of curb points
M-by-Nlogical matrix

Binary map of the point cloud with the indices of the curb points, returned as an M-by-N logical
matrix. M and N are the number of rows and columns, respectively in the input onRoadPointCloud.

curbPtCloud — Point cloud of segmented curb points
pointCloud object

Point cloud of the segmented curb points, returned as a pointCloud object.

Algorithms
The function extracts curb points from onRoadPointCloud using these steps.

 segmentCurbPoints

3-63

1 For each point in a scan line, the function computes these three features.

• Height Difference Feature — Computes the standard deviation and the height maximum
difference around a point. The standard deviation and height difference of a curb point must
be within the specified HeightDeviationLimits and HeightLimits, respectively.

• Smoothness Feature — Computes the smoothness of the area around a point. A higher
smoothness value indicates that the point is an edge point, and a lower values indicates that
the point is a plane point. The smoothness value for a curb point must be greater than the
SmoothnessThreshold value.

• Horizontal and Vertical Continuity Feature — Computes the horizontal and vertical distance
between a point and its immediate neighbors. These horizontal and vertical distance values
must be less than the horizontal and the vertical continuity thresholds, respectively. The
function computes the thresholds values from the HorizontalAngularResolution of the
lidar sensor.

2 If a point satisfies all computed features, then it as a feature curb point.
3 If you specify road angles as an input, the function further fine tunes the feature curb points

using RANSAC polynomial fitting, and returns the candidate curb points.

Version History
Introduced in R2022b

See Also
detectRoadAngles | segmentGroundSMRF | segmentLidarData |
segmentGroundFromLidarData | pcfitplane

Topics
“Extract On-Road and Off-Road Points from Point Cloud”
“Curb Detection and Tracking in 3-D Lidar Point Cloud”

3 Functions

3-64

detectRoadAngles
Detect road angles in point cloud

Syntax
roadAngles = detectRoadAngles(offRoadPointCloud)
roadAngles = detectRoadAngles(offRoadPointCloud,Name=Value)

Description
roadAngles = detectRoadAngles(offRoadPointCloud) detects road angles in a point cloud.
The point cloud must contain off-road points.

roadAngles = detectRoadAngles(offRoadPointCloud,Name=Value) specifies options using
one or more name-value arguments. For example, MinSectorSize=10 specifies the minimum sector
size required to detect a road segment as 10 degrees.

Examples

Segment Curb Points from Point Cloud

Read point cloud data from a PCD file by using the pcread function.

ptCloud = pcread("HDL64LidarData.pcd");

Organize the point cloud data by using the pcorganize function.

ptCloud = pcorganize(ptCloud,lidarParameters("HDL64E",1024));

Extract a region of interest, which contains a road, from the point cloud data.

roi = [-25 25 -10 24 ptCloud.ZLimits];
indices = findPointsInROI(ptCloud,roi);
ptCloud = select(ptCloud,indices,OutputSize="full");

Segment the on-road and off-road points from the point cloud by using the segmentGroundSMRF
function.

[~,offRoadPtCloud,onRoadPtCloud] = segmentGroundSMRF(ptCloud);

Detect road angles from the off-road points.

roadAngles = detectRoadAngles(offRoadPtCloud,MinSectorSize=10,SectorMergeThreshold=30);

Segment curb points from the on-road points of the point cloud.

[~,curbPtCloud] = segmentCurbPoints(onRoadPtCloud,roadAngles,NumScanNeighbors=10, ...
 HeightLimits=[0.001 0.5],HeightDeviationLimits=[0.001 0.5], ...
 SmoothnessThreshold=0.0001,HorizontalAngularResolution=0.33);

Visualize the segmented curb points.

 detectRoadAngles

3-65

figure
pcshow(ptCloud.Location,"w")
hold on;
pcshow(curbPtCloud.Location,"r",MarkerSize=200)
hold off
view(2)
title("Curb points")

Input Arguments
offRoadPointCloud — Point cloud with off-road points
pointCloud object

Point cloud with off-road points, specified as a pointCloud object. Off-road points usually consist of
trees, buildings, and other objects. You can apply ground segmentation or plane-fitting algorithms to
your point cloud data to extract off-road points. For more details, see “Extract On-Road and Off-Road
Points from Point Cloud”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectRoadAngles(offRoadPointCloud,MinSectorSize=10) specifies the minimum
sector size required to detect a road segment as 10 degrees.

3 Functions

3-66

MinSectorSize — Minimum sector size to detect road segment
5 (default) | scalar in the range [0, 360]

Minimum sector size to detect a road segment, specified as a scalar in the range [0, 360, in degrees.
The function does not detect any sector smaller than this value as a road segment. Increasing this
value can improve the accuracy of the road angle detection. MinSectorSize must be in the range
[0,360].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SectorMergeThreshold — Minimum merge angle between two sectors
15 (default) | scalar in the range [0, 360]

Minimum merge angle between two sectors, specified as a scalar in the range [0, 360, in degrees.
The function merges two sectors when the angle between them is lower than the
SectorMergeThreshold value. Increasing this value can improve the accuracy of the road angle
detection. SectorMergeThreshold must be in the range [0,360].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
roadAngles — Road segmentation angles
M-element vector

Road segmentation angles, returned as an M-element vector. M is the number of directions in which
the egovehicle can travel, depending on the road type. The values are in degrees, with respect to the
lidar sensor coordinate system.

Road Type M Value
Straight or curved road 2
T-shaped or Y-shaped road 3
Cross-road (+) 4
6-way junction 6

Algorithms
The function uses a beam model, followed by a toe-finding algorithm, on the off-road points to detect
the road angles.

 detectRoadAngles

3-67

Beam Model

The beam model follows these steps.

1 Launch a sequence of beams from the lidar sensor mounted on the ego vehicle. The lidar sensor
is the launching point.

2 Divide the beams into beam zones according to the angular resolution of the sensor.
3 Determine the beam angles and beam lengths with respect to the launching point.
4 For each beam zone, determine the distance between the point closest to the launching point and

the point farthest from the launching point. Compute the normalized beam length as the ratio of
the shortest distance to the longest distance.

Toe-Finding Algorithm

The toe-finding algorithm follows these steps.

1 Classify the beam zones into sectors based on their normalized beam lengths.
2 Update the sectors using the specified MinSectorSize and SectorMergeThreshold values.

3 Functions

3-68

3 Return the center angle of each sector with respect to the positive x-axis as the road
segmentation angle.

Version History
Introduced in R2022b

See Also
segmentCurbPoints | segmentGroundSMRF | segmentLidarData |
segmentGroundFromLidarData | pcfitplane

Topics
“Extract On-Road and Off-Road Points from Point Cloud”
“Curb Detection and Tracking in 3-D Lidar Point Cloud”

 detectRoadAngles

3-69

show
Visualize LOAM map

Syntax
show(loamMap)
show(loamMap,Name=Value)
ax = show(___)

Description
show(loamMap) displays the edge and surface points contained in the input lidar odometry and
mapping (LOAM) map. The function displays surface points in magenta and edge points in green.

show(loamMap,Name=Value) specifies options using one or more name-value argument. For
example, MarkerSize=5 sets the diameter size of the marker to 5 points.

ax = show(___) returns the plot axes using any combination of input arguments from previous
syntaxes.

Examples

Add Points to LOAM Map

Create a LOAM map to store LOAM feature points.

voxelSize = 0.5;
loamMap = pcmaploam(voxelSize);

Load point cloud data into the workspace.

ld = load("drivingLidarPoints.mat");

Detect LOAM feature points.

points = detectLOAMFeatures(ld.ptCloud);

Add the LOAM points to the map.

absPose = rigidtform3d;
addPoints(loamMap,points,absPose)

Visualize the points in the LOAM map.

show(loamMap)

3 Functions

3-70

Input Arguments
loamMap — LOAM map
pcmaploam object

LOAM map, specified as a pcmaploam object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: show(loamMap,MarkerSize=5) sets the diameter size of the marker to 5 points.

MarkerSize — Diameter of marker
10 (default) | positive scalar

Diameter of each marker, specified as a positive scalar. The value specifies the approximate diameter
of the markers used for each LOAM point in the display. MATLAB graphics defines the unit as points.

Parent — Axes on which to display the visualization
Axes graphics object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave Parent unspecified.

 show

3-71

Output Arguments
ax — Plot axes
Axes graphics object

Plot axes, returned as an axes graphics object. You can set the default center of rotation for the
viewer as around the axes center or a point. Set the default behavior from the “Computer Vision
Toolbox Preferences”.

Version History
Introduced in R2022b

See Also
Objects
pcmaploam

Functions
addPoints | findPose

3 Functions

3-72

findPose
Find absolute pose of points in map

Syntax
absPose = findPose(loamMap,points,relPose)
absPose = findPose(___ ,localMapSize)
[absPose,optimizedRelPose] = findPose(___)
[absPose,optimizedRelPose,rmse] = findPose(___)
[___] = findPose(___ ,Name=Value)

Description
absPose = findPose(loamMap,points,relPose) returns the optimized absolute pose that
aligns the specified points to the points in the lidar odometry and mapping (LOAM) map loamMap.

absPose = findPose(___ ,localMapSize) specifies the size of the local map used to refine the
absolute pose, in addition to all input arguments from the previous syntax. When you do not specify
localMapSize, the function uses a map size defined by the x, y, and z spatial extents of all the input
points enlarged on all sides by a spatial radius, SearchRadius, centered around the estimated
absolute pose absPose.

[absPose,optimizedRelPose] = findPose(___) returns the optimized relative pose.

[absPose,optimizedRelPose,rmse] = findPose(___) returns the root mean squared error
of the Euclidean distance between the aligned points. Lower values indicate a more accurate
alignment.

[___] = findPose(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
SearchRadius=4 sets the search radius for point matching to 4.

Examples

Find Absolute Pose of Points in LOAM Map

Create a map to store LOAM feature points.

voxelSize = 0.1;
loamMap = pcmaploam(voxelSize);

Create a velodyneFileReader object to read point cloud daata.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read the first point cloud into the workspace.

ptCloud1 = readFrame(veloReader,1);

Detect LOAM feature points.

 findPose

3-73

points1 = detectLOAMFeatures(ptCloud1);

Downsample the less planar surface points to improve registration speed.

gridStep = 1;
points1 = downsampleLessPlanar(points1,gridStep);

Add the LOAM points of the first point cloud to the map.

absPose = rigidtform3d;
addPoints(loamMap,points1,absPose)

Read the fifth point cloud, and detect the LOAM feature points in it.

ptCloud2 = readFrame(veloReader,5);
points2 = detectLOAMFeatures(ptCloud2);

Downsample the less planar surface points.

points2 = downsampleLessPlanar(points2,gridStep);

Get a relative pose estimate by using the pcregisterloam function.

relPose = pcregisterloam(points2,points1);

Find the absolute pose of the points from the fifth point cloud in the map.

absPose = findPose(loamMap,points2,relPose);

Add the points from the fifth point cloud to the map.

addPoints(loamMap,points2,absPose)

Visualize the map.

figure
show(loamMap,MarkerSize=20)

3 Functions

3-74

Input Arguments
loamMap — LOAM map
pcmaploam object

LOAM map, specified as a pcmaploam object.

points — LOAM points
LOAMPoints object

LOAM points, specified as a LOAMPoints object.

relPose — Relative pose
rigidtform3d object

Relative pose, specified as a rigidtform3d object. The relPose input contains the relative pose
between the new input points and the last points added to the LOAM map loamMap in the sensor
frame. You can use the pcregisterloam function to estimate the relative pose.

localMapSize — Local map size
three-element vector

Local map size, specified as a three-element vector of the form [dx dy dz]. When you do not specify
localMapSize, the function uses a map size defined by the x, y, and z spatial extents of all the input

 findPose

3-75

points enlarged on all sides by a spatial radius, SearchRadius, centered around the estimated
absolute pose absPose.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: findPose(loamMap,points,relPose,SearchRadius=4) sets the search radius for
point matching to 4.

SearchRadius — Search radius for point matching
3 (default) | positive integer

Search radius for point matching, specified as a positive integer. When matching, the function finds
the closest edge and surface points within the specified radius. For best results, set this value based
on the certainty of the relative pose, specified by the relPose input. You can increase the value of
SearchRadius when there is greater uncertainty in the relative pose input, but this can also
decrease the registration speed.

MaxIterations — Maximum iterations before LOAM registration stops
20 (default) | positive integer

Maximum iterations before LOAM registration stops, specified as a positive integer.

Tolerance — Tolerance between consecutive LOAM iterations
[0.01,0.5] (default) | two-element vector

Tolerance between consecutive LOAM iterations, specified as a two-element vector, with nonnegative
values, of the form [Tdiff Rdiff].

• Tdiff — Tolerance for the estimated absolute difference in translation and rotation between
consecutive LOAM iterations. Measures the Euclidean distance between two translation vectors.

• Rdiff — Tolerance for the estimated absolute difference of the angular rotation between
consecutive iterations, measured in degrees.

The algorithm stops when the difference between the estimates of the rigid transformations in the
most recent consecutive iteration falls below the specified tolerance value.

Verbose — Display progress information
false or 0 (default) | true or 1

Display progress information, specified as a numeric or logical 0 (false) or 1 (true). To display
progress information, set Verbose to true.

Output Arguments
absPose — Absolute pose
rigidtform3d object

Absolute pose for aligning new points to the existing points in a LOAM map, returned as a
rigidtform3d object. The addPoints function uses the absolute pose to align new points to the
existing map.

3 Functions

3-76

optimizedRelPose — Optimized relative pose
rigidtform3d object

Optimized relative pose, returned as a rigidtform3d object.

rmse — Root mean squared error
positive scalar

Root mean squared error, returned as a positive scalar that described the Euclidean distance between
the aligned points. Lower values indicate a more accurate alignment.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
pcmaploam | LOAMPoints | rigidtform3d

Functions
addPoints | show

 findPose

3-77

addPoints
Add LOAM points to map

Syntax
addPoints(loamMap,points,absPose)

Description
addPoints(loamMap,points,absPose) adds the specified LOAM points to the lidar odometry and
mapping (LOAM) map. The function uses the absolute pose to align the new points to the existing
map.

addPoints ensures that each voxel has no more than one edge point and one surface point. The
voxel size is specified by the VoxelSize property of loamMap.

Examples

Add Points to LOAM Map

Create a LOAM map to store LOAM feature points.

voxelSize = 0.5;
loamMap = pcmaploam(voxelSize);

Load point cloud data into the workspace.

ld = load("drivingLidarPoints.mat");

Detect LOAM feature points.

points = detectLOAMFeatures(ld.ptCloud);

Add the LOAM points to the map.

absPose = rigidtform3d;
addPoints(loamMap,points,absPose)

Visualize the points in the LOAM map.

show(loamMap)

3 Functions

3-78

Input Arguments
loamMap — LOAM map
pcmaploam object

LOAM map, specified as a pcmaploam object.

points — LOAM points
LOAMPoints object

LOAM points, specified as a LOAMPoints object.

absPose — Absolute pose
rigidtform3d object

Absolute pose, specified as a rigidtform3d object. The object function uses the absolute pose to
align the new points to the existing map.

When the map size, specified by the MapSize property of the pcmaploam object loamMap, limits the
size of the LOAM map, the addPoints object function updates the XLimits, YLimits, and ZLimits
properties of loamMap to reflect the LOAM points it contains. The function uses the center of the
map, which is defined by absPose, to update the properties.

 addPoints

3-79

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Limitations:

When you add points by using the addPoints object function, the Location property of all points in
the points input must have the same datatype.

See Also
Objects
pcmaploam | LOAMPoints | rigidtform3d

Functions
show | findPose

3 Functions

3-80

pcregisterloam
Register two point clouds using LOAM algorithm

Syntax
tform = pcregisterloam(movingPtCloud,fixedPtCloud,gridStep)
tform = pcregisterloam(movingPoints,fixedPoints)
[tform,rmse] = pcregisterloam(___)
[___] = pcregisterloam(___ ,Name=Value)

Description
tform = pcregisterloam(movingPtCloud,fixedPtCloud,gridStep) registers the moving
point cloud movingPoints with the fixed point cloud fixedPoints using the lidar odometry and
mapping (LOAM) algorithm. The function returns the rigid transformation tform, between the
moving and fixed point clouds. gridStep specifies the size of a 3-D box used to downsample the
LOAM points detected in the input point clouds.

tform = pcregisterloam(movingPoints,fixedPoints) registers the moving LOAM points
movingPoints with the fixed LOAM points fixedPoints and returns the rigid transformation
between them tform. Using this function to register LOAM points is faster and more accurate than
using it to register point clouds.

You can obtain the LOAM points of the moving and fixed point clouds by using the
detectLOAMFeatures function, which detects LOAM feature points from organized point clouds.

[tform,rmse] = pcregisterloam(___) returns the root mean squared error rmse of the
Euclidean distance between the aligned points.

[___] = pcregisterloam(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any combination of arguments from previous syntaxes. For example,
MatchingMethod='one-to-one' sets the matching method algorithm to 'one-to-one'.

Examples

Align Two Point Clouds Using LOAM Registration Algorithm

Load and visualize point cloud data.

ld = load('livingRoom.mat');
movingPtCloud = ld.livingRoomData{1};
fixedPtCloud = ld.livingRoomData{2};
figure
pcshowpair(movingPtCloud,fixedPtCloud,'VerticalAxis','Y','VerticalAxisDir','Down')

 pcregisterloam

3-81

Register the point clouds.

gridStep = 0.5;
tform = pcregisterloam(movingPtCloud,fixedPtCloud,gridStep);

Align and visualize the point clouds.

alignedPtCloud = pctransform(movingPtCloud, tform);
figure
pcshowpair(alignedPtCloud,fixedPtCloud,'VerticalAxis','Y','VerticalAxisDir','Down')

3 Functions

3-82

Align Two Point Clouds Using LOAM Points

Read point cloud data from a Velodyne PCAP file into the workspace.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read the first point cloud from the data. Use this point cloud as the fixed point cloud.

fixedPtCloud = readFrame(veloReader,1);

Detect LOAM feature points in the fixed point cloud.

fixedPoints = detectLOAMFeatures(fixedPtCloud);

Downsample the less planar surface points from the fixed point cloud, to improve registration speed.

gridStep = 1;
fixedPoints = downsampleLessPlanar(fixedPoints,gridStep);

Read and detect LOAM feature points from the fifth point cloud in the data. Use this point cloud as
the moving point cloud.

movingPtCloud = readFrame(veloReader,5);
movingPoints = detectLOAMFeatures(movingPtCloud);

Downsample the less planar surface points from the moving point cloud.

 pcregisterloam

3-83

movingPoints = downsampleLessPlanar(movingPoints,gridStep);

Register the moving point cloud to the fixed point cloud.

tform = pcregisterloam(movingPoints,fixedPoints);

Transform the moving point cloud to align it to the fixed point cloud.

alignedPtCloud = pctransform(movingPtCloud,tform);

Visualize the aligned point clouds. Points from the fixed point cloud display as green, while points
from the moving point cloud display as magenta.

figure
pcshowpair(alignedPtCloud,fixedPtCloud)

Input Arguments
movingPtCloud — Organized moving point cloud
pointCloud object

Organized moving point cloud, specified as a pointCloud object. The point cloud object must
contain an organized point cloud with a Location property of size M-by-N-by-3 matrix, where M is
the number of laser scans and N is the number of points per scan. The first page represents the x-
coordinates, the second page represents the y-coordinates, and the third page represents the z-
coordinates for each point.

3 Functions

3-84

fixedPtCloud — Organized fixed point cloud
pointCloud object

Organized fixed point cloud, specified as a pointCloud object. The point cloud object must contain
an organized point cloud with a Location property of size M-by-N-by-3 matrix, where M is the
number of laser scans and N is the number of points per scan. The first page represents the x-
coordinates, the second page represents the y-coordinates, and the third page represents the z-
coordinates for each point.

movingPoints — Moving LOAM points
LOAMPoints object

Moving LOAM points, specified as a LOAMPoints object. You can obtain the LOAM points from the
moving point cloud by using the detectLOAMFeatures function, which detects LOAM feature points
from organized point clouds.

fixedPoints — Fixed LOAM points
LOAMPoints object

Fixed LOAM points, specified as a LOAMPoints object. You can obtain the LOAM points from the
fixed point cloud by using the detectLOAMFeatures function, which detects LOAM feature points
from organized point clouds.

gridStep — Size of 3-D box for downsampling detected LOAM points
positive scalar

Size of the 3-D box for downsampling the detected LOAM points in the input point cloud, specified as
a positive scalar.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: pcregisterloam(movingPoints,fixedPoints,MatchingMethod='one-to-one')
sets the registration matching method to 'one-to-one'.

InitialTransform — Initial rigid transformation
rigidtform3d object

Initial rigid transformation, specified as a rigidtform3d object. Set the initial transformation to a
coarse estimate. If you do not provide a coarse or initial estimate, the function uses a rigidtform3d
object that contains a translation that moves the center of the moving points to the center of the fixed
points.

MatchingMethod — Matching method
'one-to-one' (default) | 'one-to-many'

Matching method, specified as 'one-to-one' or 'one-to-many'.

• 'one-to-one' — The algorithm selects the nearest neighbor as a match.
• 'one-to-many' — The algorithm selects multiple nearest neighbors within the specified search

radius as matches. Using the 'one-to-many' method can increase registration accuracy, but at
the cost of processing speed.

 pcregisterloam

3-85

SearchRadius — Search radius for point matching
3 (default) | positive integer

Search radius for point matching, specified as a positive integer. When matching, the function finds
the closest edge and surface points within the specified radius. For best results, set this value based
on the certainty of the “InitialTransform” on page 3-0 . Increase the value of the
SearchRadius when there is greater uncertainty in the initial transformation, but this can also
decrease the registration speed.

MaxIterations — Maximum iterations before LOAM registration stops
20 (default) | positive integer

Maximum iterations before LOAM registration stops, specified as a positive integer.

Tolerance — Tolerance between consecutive LOAM iterations
[0.01,0.5] (default) | two-element vector

Tolerance between consecutive LOAM iterations, specified as a two-element vector with nonnegative
values. The vector, [Tdiff Rdiff].

• Tdiff — Tolerance for the estimated absolute difference in translation and rotation estimated in
consecutive LOAM iterations. Measures the Euclidean distance between two translation vectors.

• Rdiff — Tolerance for the estimated absolute difference of the angular rotation between
consecutive iterations, measured in degrees.

The algorithm stops when the difference between the estimates of the rigid transformations in the
most recent consecutive iterations falls below the specified tolerance value.

Verbose — Display progress information
false or 0 (default) | true or 1

Display progress information, specified as a numeric or logical 0 (false) or 1 (true). To display
progress information, set Verbose to true.

Output Arguments
tform — Rigid 3-D transformation
rigidtform3d object

Rigid 3-D transformation, returned as a rigidtform3d object. tform describes the rigid 3-D
transformation that registers the moving points to the fixed points.

rmse — Root mean squared error
positive scalar

Root mean squared error, returned as a positive scalar that represents the Euclidean distance
between aligned points. A lower rmse value indicates a more accurate registration.

Version History
Introduced in R2022a

R2022b: Supports rigidtform3d objects
Behavior changed in R2022b

3 Functions

3-86

You can now specify the InitialTransform name-value argument as a rigidtform3d object,
which uses the premultiply convention. Although you can still specify InitialTransform as a
rigid3d object, this object is not recommended because it uses the postmultiply convention. For
more information, see “Migrate Geometric Transformations to Premultiply Convention”.

When you specify InitialTransform, the pcregisterloam function returns tform as an object of
the same type. When you do not specify InitialTransform, the pcregisterloam function returns
tform as a rigidtform3d object. Before, the function returned tform as a rigid3d object.

References
[1] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:

Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/
10.15607/RSS.2014.X.007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The Verbose name-value argument is not supported for code generation.
• The InitialTransform name-value argument of the rigid3d object is not supported for code

generation.

See Also
Objects
rigidtform3d | pointCloud | LOAMPoints

Functions
detectLOAMFeatures | pcregistericp | pcregisterndt | pcregistercorr

Topics
“Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation”

 pcregisterloam

3-87

detectLOAMFeatures
Detect LOAM feature points from 3-D lidar data

Syntax
points = detectLOAMFeatures(ptCloudOrg)
points = detectLOAMFeatures(ptCloudOrg,Name=Value)

Description
points = detectLOAMFeatures(ptCloudOrg) detects lidar odometry and mapping (LOAM)
features in a point cloud based on curvature values. The function computes the curvature of each
point using the closest neighbors of that point in the same laser scan. The curvature value of a
feature point determines whether the function classifies it as a sharp edge, less sharp edge, planar
surface, or less planar surface point.

points = detectLOAMFeatures(ptCloudOrg,Name=Value) specifies options using one or more
name-value arguments. For example, NumRegionsPerLaser=6 sets the number of regions to split
each laser scan to 6. Unspecified arguments have default values.

Examples

Detect and Visualize LOAM Feature Points

Load an organized lidar point cloud from a MAT file into the workspace.

ld = load("drivingLidarPoints.mat");
ptCloudOrg = ld.ptCloud;

Detect lidar odometry and mapping (LOAM) feature points.

points = detectLOAMFeatures(ptCloudOrg);

Visualize the LOAM points.

figure
show(points)

3 Functions

3-88

Align Two Point Clouds Using LOAM Points

Read point cloud data from a Velodyne PCAP file into the workspace.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read the first point cloud from the data. Use this point cloud as the fixed point cloud.

fixedPtCloud = readFrame(veloReader,1);

Detect LOAM feature points in the fixed point cloud.

fixedPoints = detectLOAMFeatures(fixedPtCloud);

Downsample the less planar surface points from the fixed point cloud, to improve registration speed.

gridStep = 1;
fixedPoints = downsampleLessPlanar(fixedPoints,gridStep);

Read and detect LOAM feature points from the fifth point cloud in the data. Use this point cloud as
the moving point cloud.

movingPtCloud = readFrame(veloReader,5);
movingPoints = detectLOAMFeatures(movingPtCloud);

Downsample the less planar surface points from the moving point cloud.

 detectLOAMFeatures

3-89

movingPoints = downsampleLessPlanar(movingPoints,gridStep);

Register the moving point cloud to the fixed point cloud.

tform = pcregisterloam(movingPoints,fixedPoints);

Transform the moving point cloud to align it to the fixed point cloud.

alignedPtCloud = pctransform(movingPtCloud,tform);

Visualize the aligned point clouds. Points from the fixed point cloud display as green, while points
from the moving point cloud display as magenta.

figure
pcshowpair(alignedPtCloud,fixedPtCloud)

Align Two Point Clouds Using ICP Algorithm With LOAM Points

Create a velodyneFileReader object.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read first and fifth point clouds.

fixedPtCloud = readFrame(veloReader,1);
movingPtCloud = readFrame(veloReader,5);

3 Functions

3-90

Detect LOAM feature points.

fixedPoints = detectLOAMFeatures(fixedPtCloud);
movingPoints = detectLOAMFeatures(movingPtCloud);

Create point cloud objects with the LOAM points.

fixedPtCloudLoam = pointCloud(fixedPoints.Location);
movingPtCloudLoam = pointCloud(movingPoints.Location);

Register the point clouds.

tform = pcregistericp(movingPtCloudLoam,fixedPtCloudLoam);

Transform the moving point cloud to align it to the fixed point cloud.

alignedPtCloud = pctransform(movingPtCloud,tform);

Visualize the aligned point clouds.

figure
pcshowpair(alignedPtCloud,fixedPtCloud)

Input Arguments
ptCloudOrg — Organized point cloud
pointCloud object

 detectLOAMFeatures

3-91

Organized point cloud, specified as a pointCloud object. The point cloud object must contain an
organized point cloud with a Location property of size M-by-N-by-3 matrix, where M is the number
of laser scans and N is the number of points per scan. The first page represents the x-coordinates, the
second page represents the y-coordinates, and the third page represents the z- coordinates for each
point.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectLOAMFeatures(ptCloudOrg,NumRegionsPerLaser = 6) sets the number of
regions to split each laser scan into for feature point detection to 6.

NumRegionsPerLaser — Number of regions per laser scan
6 (default) | positive integer

Number of regions per laser scan for feature point detection, specified as a positive integer. The
function splits each laser scan into regions that contain equal numbers of points. The algorithm
detects up to the maximum number of points for each feature type in each region. You can specify the
maximum number of sharp edge, less sharp edge, and planar surface points by using the
MaxSharpEdgePoints, MaxLessSharpEdgePoints, and MaxPlanarSurfacePoints arguments,
respectively. Increase the number of spatial regions to detect more edge points and planar surface
points uniformly throughout the point cloud. Detecting more edge points and planar surface points
can improve registration accuracy using LOAM points, but can decrease the processing speed of the
function.

MaxSharpEdgePoints — Maximum number of sharp edge points per laser scan region
1 (default) | positive integer

Maximum number of sharp edge points per laser scan region, specified as a positive integer. The
sharp edge points are the points with the highest curvatures.

MaxLessSharpEdgePoints — Maximum number of less sharp edge points per laser scan
region
MaxSharpEdgePoints*2 (default) | positive integer

Maximum number of less sharp edge points per laser scan region, specified as a positive integer. The
less sharp edge points are the points with the highest curvature values after the sharp edge points.

MaxPlanarSurfacePoints — Maximum number of planar surface points per laser scan
region
1 (default) | positive integer

Maximum number of planar surface points per laser scan region, specified as a positive integer. The
planar surface points are the points with the lowest curvature values.

Output Arguments
points — LOAM feature points
LOAMPoints object

LOAM feature points, returned as a LOAMPoints object.

3 Functions

3-92

Tips
• Because LOAM feature point detection supports only organized point clouds, convert an

unorganized point cloud into an organized point cloud by using the pcorganize function.
• The LOAM algorithm relies on the neighborhood of each point to compute its curvature and

identify which points are on the boundaries of occluded regions. These points are considered
unreliable points. Because of this unreliability, any preprocessing steps to the point clouds prior to
feature point detection is not recommended.

• You can increase registration accuracy by increasing the maximum total number of feature points
the function can detect. To increase the total number of feature points, increase the value of one
or more of the MaxSharpEdgePoints, MaxLessSharpEdgePoints, and
MaxPlanarSurfacePoints arguments. Note that this can also decrease the processing speed.

Algorithms
• The feature point detection algorithm supports VLP-16, HDL-32, and other spinning lidar sensors

also known as surround sensors.
• The laser ID of each point corresponds to the laser that detects the point. For organized point

clouds used with this algorithm, the pointCloud Location property stores the collected points
as an M-by-N-by-3 matrix. Each row M represents a separate laser scan with N number of points,
and 3 represents the x,y,z coordinates for each point.

• The algorithm uses the laser ID for point detection in detectLOAMFeatures and for point
matching in pcregisterloam.

Version History
Introduced in R2022a

References
[1] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:

Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/
10.15607/RSS.2014.X.007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
LOAMPoints | pointCloud

Functions
pcregisterloam | pcorganize | pcregistericp | extractFPFHFeatures

 detectLOAMFeatures

3-93

Topics
“Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation”

3 Functions

3-94

extractEigenFeatures
Extract eigenvalue-based features from point cloud segments

Syntax
features = extractEigenFeatures(ptCloud,labels)
features = extractEigenFeatures(segmentsIn)
[features,segmentsOut] = extractEigenFeatures(___)
[___] = extractEigenFeatures(___ ,NormalizeEigenvalues=tf)

Description
features = extractEigenFeatures(ptCloud,labels) extracts eigenvalue-based features
from a point cloud using labels, labels, that correspond to the segmented point cloud.

Eigenvalue-based features characterize geometrical features of point cloud segments. These features
can be used in simultaneous localization and mapping (SLAM) applications for loop closure detection
and localization in a target map.

features = extractEigenFeatures(segmentsIn) returns eigenvalue-based features from the
point cloud segments segmentsIn. Use this syntax to facilitate the selection of specific segments in a
point cloud scan for local feature extraction.

[features,segmentsOut] = extractEigenFeatures(___) additionally returns the segments
extracted from the input point cloud using any combination of arguments from previous syntaxes. Use
this syntax to facilitate visualization of the segments.

[___] = extractEigenFeatures(___ ,NormalizeEigenvalues=tf) normalizes the
eigenvalues prior to computing features, specified as true or false. Set tf to true when the next
step is to use a classifier to assign a semantic label to a 3-D point. Set tf to false when the next
step is to find matching features. The default value is false.

Examples

Compute Eigenvalue-Based Features from Normalized Eigenvalues

Load an organized lidar point cloud.

ld = load('drivingLidarPoints.mat');
ptCloud = ld.ptCloud;

Segment and remove the ground plane.

groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',15);
ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

Cluster the remaining points with a minimum of 50 points per cluster.

 extractEigenFeatures

3-95

distThreshold = 0.5; % in meters
minPoints = 50;
[labels,numClusters] = segmentLidarData(ptCloud,distThreshold,'NumClusterPoints',minPoints);

Compute eigenvalue-based features.

features = extractEigenFeatures(ptCloud,labels,'NormalizeEigenvalues',true)

features=17×1 object
 16x1 eigenFeature array with properties:

 Feature
 Centroid
 ⋮

Match Eigenvalue-Based Features Between Point Clouds

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the first and fourth scans from the file.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,4);

Remove the ground plane from the scans.

maxDistance = 1; % in meters
referenceVector = [0 0 1];
[~,~,selectIdx] = pcfitplane(ptCloud1,maxDistance,referenceVector);
ptCloud1 = select(ptCloud1,selectIdx,'OutputSize','full');
[~,~,selectIdx] = pcfitplane(ptCloud2,maxDistance,referenceVector);
ptCloud2 = select(ptCloud2,selectIdx,'OutputSize','full');

Cluster the point clouds with a minimum of 10 points per cluster.

minDistance = 2; % in meters
minPoints = 10;
labels1 = pcsegdist(ptCloud1,minDistance,'NumClusterPoints',minPoints);
labels2 = pcsegdist(ptCloud2,minDistance,'NumClusterPoints',minPoints);

Extract eigen-value features and the corresponding segments from each point cloud.

[eigFeatures1,segments1] = extractEigenFeatures(ptCloud1,labels1);
[eigFeatures2,segments2] = extractEigenFeatures(ptCloud2,labels2);

Create matrices of the features and centroids extracted from each point cloud, for matching.

features1 = vertcat(eigFeatures1.Feature);
features2 = vertcat(eigFeatures2.Feature);
centroids1 = vertcat(eigFeatures1.Centroid);
centroids2 = vertcat(eigFeatures2.Centroid);

Find putative feature matches.

3 Functions

3-96

indexPairs = pcmatchfeatures(features1,features2, ...
 pointCloud(centroids1),pointCloud(centroids2));

Get the matched segments and features for visualization.

matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));

Visualize the matches.

figure
pcshowMatchedFeatures(matchedSegments1,matchedSegments2,matchedFeatures1,matchedFeatures2)
title('Matched Segments')

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

labels — Cluster labels
M-element vector of numeric values | M-by-N matrix of numeric values

 extractEigenFeatures

3-97

Cluster labels, specified as an M-element vector of numeric values for unorganized point clouds or an
M-by-N matrix of numeric values for organized point clouds. The labels correspond to the results of
segmenting the input point cloud. Each point in the point cloud has a cluster label, specified by the
corresponding element in labels.

You can use the pcsegdist or the segmentLidarData function to return labels.

segmentsIn — Point cloud segments
vector of pointCloud objects

Point cloud segments, specified as a vector of pointCloud objects. Each point cloud segment in the
input must have a minimum of two points for feature extraction. No features or segments are
returned for input segments with only one point.

Output Arguments
features — Eigenvalue-based features
vector of eigenFeature objects

Eigenvalue-based features, returned as a vector of eigenFeature objects. When you extract
features from a labeled point cloud input, each element in this vector contains the features extracted
from the corresponding cluster of labeled points. When you extract features from a segments input,
each element in this vector contains the features extracted from the corresponding element in the
segments vector.

segmentsOut — Segments extracted from point cloud
vector of pointCloud objects

Segments extracted from the point cloud, specified as a vector of pointCloud objects. The length of
the segments vector corresponds to the number of nonzero, unique labels.

Version History
Introduced in R2021a

References
[1] Weinmann, M., B. Jutzi, and C. Mallet. “Semantic 3D Scene Interpretation: A Framework

Combining Optimal Neighborhood Size Selection with Relevant Features.” ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences II–3 (August 7, 2014):
181–88. https://doi.org/10.5194/isprsannals-II-3-181-2014.

See Also
Functions
scanContextDescriptor | pcmatchfeatures | pcshowMatchedFeatures |
extractFPFHFeatures | segmentLidarData | pcsegdist

Objects
pointCloud | eigenFeature | pcmapsegmatch

3 Functions

3-98

Topics
“Build Map and Localize Using Segment Matching”
“Implement Point Cloud SLAM in MATLAB”

 extractEigenFeatures

3-99

pcfitcuboid
Fit cuboid over point cloud

Syntax
model = pcfitcuboid(ptCloudIn)
model = pcfitcuboid(ptCloudIn,indices)
model = pcfitcuboid(___ ,Name,Value)

Description
model = pcfitcuboid(ptCloudIn) fits a cuboid over the input point cloud data. The function
stores the properties of the cuboid in the cuboidModel object, model.

model = pcfitcuboid(ptCloudIn,indices) fits a cuboid over a selected set of points,
indices, in the input point cloud.

model = pcfitcuboid(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
'AzimuthRange',[25 75] sets the angular range for the azimuth angles of the function.

Examples

Fit Cuboid Over Point Cloud Data

Fit cuboid bounding boxes around clusters in a point cloud.

Load the point cloud data into the workspace.

data = load('drivingLidarPoints.mat');

Define and crop a region of interest (ROI) from the point cloud. Visualize the selected ROI of the point
cloud.

roi = [-40 40 -6 9 -2 1];
in = findPointsInROI(data.ptCloud,roi);
ptCloudIn = select(data.ptCloud,in);
hcluster = figure;
panel = uipanel('Parent',hcluster,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn,'MarkerSize',30,'Parent',ax)
title('Input Point Cloud')

3 Functions

3-100

Segment the ground plane. Visualize the segmented ground plane.

maxDistance = 0.3;
referenceVector = [0 0 1];
[~,inliers,outliers] = pcfitplane(ptCloudIn,maxDistance,referenceVector);
ptCloudWithoutGround = select(ptCloudIn,outliers,'OutputSize','full');
hSegment = figure;
panel = uipanel('Parent',hSegment,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshowpair(ptCloudIn,ptCloudWithoutGround,'Parent',ax)
legend('Ground Region','Non-Ground Region','TextColor', [1 1 1])
title('Segmented Ground Plane')

 pcfitcuboid

3-101

Segment the non-ground region of the point cloud into clusters. Visualize the segmented point cloud.

distThreshold = 1;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);
labelColorIndex = labels;
hCuboid = figure;
panel = uipanel('Parent',hCuboid,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn.Location,labelColorIndex,'Parent',ax)
title('Fitting Bounding Boxes')
hold on

Fit bounding box on each cluster, visualized as orange highlights.

for i = 1:numClusters
 idx = find(labels == i);
 model = pcfitcuboid(ptCloudWithoutGround,idx);
 plot(model)
end

3 Functions

3-102

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected valid points
vector of positive integers

Indices of selected valid points, specified as a vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AzimuthRange',[25 75] sets the angular range for the azimuth angles of the function.

AzimuthRange — Range of azimuth angles
[0 90] (default) | two-element row vector of real values

 pcfitcuboid

3-103

Range of azimuth angles over which to identify the orientation of the cuboid, specified as the comma-
separated pair consisting of 'AzimuthRange' and a two-element row vector of real values in the
range [0, 90].
Data Types: single | double

Resolution — Step size of search window
1 (default) | positive scalar

Step size of search window, specified as the comma-separated pair consisting of 'Resolution' and
a positive scalar. The specified value must be less than or equal to the distance between the upper
and lower bounds of the range of azimuth angles. For example, if the range of azimuth angles is [0,
90], the specified value must be less than or equal to 90.

Note Decreasing the resolution will increase the computation time and memory footprint.

Data Types: single | double

Output Arguments
model — Cuboid model
cuboidModel object

Cuboid model, returned as a cuboidModel object.

Version History
Introduced in R2020b

References
[1] Xiao Zhang, Wenda Xu, Chiyu Dong and John M. Dolan, "Efficient L-Shape Fitting for Vehicle

Detection Using Laser Scanners", IEEE Intelligent Vehicles Symposium, June 2018

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
pcfitplane | pcfitcylinder | pcfitsphere

Objects
pointCloud | cuboidModel

3 Functions

3-104

extractFPFHFeatures
Extract fast point feature histogram (FPFH) descriptors from point cloud

Syntax
features = extractFPFHFeatures(ptCloudIn)
features = extractFPFHFeatures(ptCloudIn,indices)
features = extractFPFHFeatures(ptCloudIn,row,column)
[___ ,validIndices] = extractFPFHFeatures(___)
[___] = extractFPFHFeatures(___ ,Name,Value)

Description
features = extractFPFHFeatures(ptCloudIn) extracts FPFH descriptors for each valid point
in the input point cloud object. The function returns descriptors as an N-by-33 matrix, where N is the
number of valid points in the input point cloud.

features = extractFPFHFeatures(ptCloudIn,indices) extracts FPFH descriptors for the
valid points located at the specified linear indices, indices.

features = extractFPFHFeatures(ptCloudIn,row,column) extracts FPFH descriptors for
the valid points at the specified 2-D indices of the input organized point cloud ptCloudIn. Specify
the row and column indices of the points as row and column, respectively.

[___ ,validIndices] = extractFPFHFeatures(___) returns the linear indices of valid points
in the point cloud for which FPFH descriptors have been extracted.

[___] = extractFPFHFeatures(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to any combination of arguments in previous syntaxes.

Descriptors can be extracted using KNN search method, radius search method or a combination of
both. The extractFPFHFeatures function uses KNN search method to extract descriptors by
default. The users can choose the method of extraction through the name-value pair arguments. For
example, 'NumNeighbors',8 selects the KNN search method to extract descriptors and sets
maximum number of neighbors to consider in the k-nearest neighbor (KNN) search method to eight.

Examples

Extract FPFH Descriptors at Selected Indices in Point Cloud

Load point cloud data into the workspace.

ptObj = pcread('teapot.ply');

Downsample the point cloud.

ptCloudIn = pcdownsample(ptObj,'gridAverage',0.05);

Extract FPFH descriptors for the points at specified key indices.

 extractFPFHFeatures

3-105

keyInds = [6565 10000];
features = extractFPFHFeatures(ptCloudIn,keyInds);

Display the key points on the point cloud.

ptKeyObj = pointCloud(ptCloudIn.Location(keyInds,:),'Color',[255 0 0;0 0 255]);
figure
pcshow(ptObj)
title('Selected Indices on Point Cloud')
hold on
pcshow(ptKeyObj,'MarkerSize',1000)
hold off

Display the extracted FPFH descriptors at key points.

figure
ax1 = subplot(2,1,1);
bar(features(1,:),'FaceColor',[1 0 0])
title('FPFH Descriptors of Selected Indices')
ax2 = subplot(2,1,2);
bar(features(2,:),'FaceColor',[0 0 1])
linkaxes([ax1 ax2],'xy')

3 Functions

3-106

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Linear indices of selected points
vector of positive integers

Linear indices of selected points, specified as a vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

row — Row indices of selected points
vector of positive integers

Row indices of selected points in an organized point cloud, specified as a vector of positive integers.

The row and column vectors must be of the same length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

column — Column indices of selected points
vector of positive integers

 extractFPFHFeatures

3-107

Column indices of selected points in an organized point cloud, specified as a vector of positive
integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumNeighbors',8 sets the maximum number of neighbors to consider in the k-nearest
neighbor (KNN) search method to eight.

NumNeighbors — Number of neighbors for KNN search
50 (default) | positive integer

Number of neighbors for the KNN search method, specified as the comma-separated pair consisting
of 'NumNeighbors' and a positive integer.

KNN search method calculates the distance between a point and its adjacent points in a point cloud
and sorts them in ascending order. Closest points are considered as neighbors. 'NumNeighbors'
sets the upper limit for the number of neighbors to consider.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Radius — Radius considered for radius search
0.05 (default) | positive real-valued scalar

Radius considered for radius search method, specified as the comma-separated pair consisting of
'Radius' and a positive real-valued scalar.

Radius search method sets a particular radius around a point and selects all the adjacent points
within that given radius as neighbors.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Note If you specify values for both the 'NumNeighbors' and 'Radius' name-value pair
arguments, the extractFPFHFeatures function performs the KNN search method, and then selects
only those of that set within the given radius.

If you specify large values for 'NumNeighbors' and 'Radius', the memory footprint and
computation time increase.

Output Arguments
features — FPFH descriptors
N-by-33 matrix of positive real values

FPFH descriptors, returned as a N-by-33 matrix of positive real values. N is the number of valid
points from which the function extracts FPFH descriptors. Each column contains the FPFH
descriptors for a valid point in the point cloud. To additionally return the indices of the extracted
points, use the validIndices output argument.

3 Functions

3-108

Data Types: double

validIndices — Linear indices of valid points
vector of positive integers

Linear indices of valid points, specified as a vector of positive integers. The vector contains the
indices of only those points for which the function extracts features.
Data Types: double

Version History
Introduced in R2020b

References
[1] Rusu, Radu Bogdan, Nico Blodow, and Michael Beetz. "Fast point feature histograms (FPFH) for

3D registration." In 2009 IEEE International Conference on Robotics and Automation, pp.
3212-3217. IEEE, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
pcread | pcdownsample | pcnormals | pcshow

Objects
pointCloud

 extractFPFHFeatures

3-109

pcmedian
Median filtering 3-D point cloud data

Syntax
ptCloudOut = pcmedian(ptCloudIn)
ptCloudOut = pcmedian(___ ,Name,Value)

Description
ptCloudOut = pcmedian(ptCloudIn) performs median filtering of 3-D point cloud data. The
function filters each channel of the point cloud individually. The output is a filtered point cloud. Each
output location property value is the median of neighborhood around the corresponding input
location property value. The pcmedian function doesn't pad zeros on the edges. Rather, it operates
only on the available neighborhood values.

If the input point cloud is an organized point cloud, the pcmedian function uses N-by-N
neighborhood method. If the point cloud is unorganized, the function uses radial neighborhood
method.

ptCloudOut = pcmedian(___ ,Name,Value) specifies options using one or more name-value
pair arguments. For example, 'FilterSize',3 sets the size of the median filter for organized point
clouds to 3.

Examples

Median Filter Noisy Point Cloud

Use the median filter to remove noise from a point cloud. First, add random noise to a point cloud.
Then, use the pcmedian function to filter the noise.

Create a point cloud.

gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
Z = X.^2 + Y.^2;
ptCloud = pointCloud(cat(3,X,Y,Z));

Add random noise along the z-axis.

temp = ptCloud.Location;
count = numel(temp(:,:,3));
temp((2*count) + randperm(count,100)) = rand(1,100);
temp(count + randperm(count,100)) = rand(1,100);
temp(randperm(count,100)) = rand(1,100);
ptCloudA = pointCloud(temp);

Apply the median filter and display the three point clouds (original, noisy, and filtered).

ptCloudB = pcmedian(ptCloudA);

3 Functions

3-110

subplot(1,3,1)
pcshow(ptCloud)
title('Original Data')
subplot(1,3,2)
pcshow(ptCloudA)
title('Noisy Data')
subplot(1,3,3)
pcshow(ptCloudB)
title('Filtered Data')

Apply Median Filter on Unorganized Point Cloud Data

Load point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');
roi = [0 20 0 20 -5 15];
indices = findPointsInROI(ptCloud,roi);
ptCloud = select(ptCloud,indices);
ptCloud = pcdownsample(ptCloud,'gridAverage',0.2);

Display the point cloud data. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloud.Location,ptCloud.Location(:,1))
view(-90,2)
title('Original Point Cloud')

 pcmedian

3-111

Add noise along the z-channel in the interval (a,b). Values of a and b are chosen to make the noise
appear close to the ground.

temp = ptCloud.Location;
count = numel(temp(:,3));
a = -2.5;
b = -2;
temp((2*count)+randperm(count,200)) = a+(b-a).*rand(1,200);
ptCloudA = pointCloud(temp);

Display the noisy point cloud. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloudA.Location,ptCloudA.Location(:,1))
view(-90,2)
title('Noisy Point Cloud')

3 Functions

3-112

Apply median filter on the point cloud.

ptCloudB = pcmedian(ptCloudA,'Dimensions',3,'Radius',1);

Display the filtered point cloud. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloudB.Location, ptCloudB.Location(:,1))
view(-90,2)
title('Filtered Point Cloud')

 pcmedian

3-113

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object with at least one valid point. If the input point cloud is
organized, the size of the point cloud must be at least 3-by-3-by-3.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FilterSize',3 specifies a median filter size of 3.

Dimensions — Point cloud dimensions of interest
[1 2 3] (default) | vector of integers in the range [1 3]

Point cloud dimensions of interest, specified as a vector of integers in the range [1 3]. The values 1, 2,
and 3 correspond to the x-, y-, and z-axis respectively. You must specify dimensions in ascending
order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

3 Functions

3-114

FilterSize — Size of the median filter for organized point cloud
3 (default) | odd integer in the range [3, N]

Size of the median filter for an organized point cloud, specified as an odd integer in the range [3, N].
N is the smallest of channel dimensions in the point cloud.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Radius — Radius of neighborhood for unorganized point cloud
0.05 (default) | positive scalar

Radius of the neighborhood for unorganized point cloud, specified as a positive scalar. The
computation time increases when there are a lot of points inside the specified radius. So, large radius
values for dense point clouds can cause high computation time and impact performance.
Data Types: single | double

Output Arguments
ptCloudOut — Filtered point cloud
pointCloud object

Filtered point cloud, returned as a pointCloud object.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcdenoise | pcdownsample | pcmerge | pcshow | pctransform

Objects
pointCloud

 pcmedian

3-115

estimateCheckerboardCorners3d
Estimate world frame coordinates of checkerboard corner points in image

Syntax
imageCorners3d = estimateCheckerboardCorners3d(I,cameraIntrinsic,checkerSize)
[imageCorners3d,boardDimensions] = estimateCheckerboardCorners3d(I,
cameraIntrinsic,checkerSize)
[imageCorners3d,boardDimensions,imagesUsed] = estimateCheckerboardCorners3d(
imageFileNames,cameraIntrinsic,checkerSize)
[___] = estimateCheckerboardCorners3d(imageArray,cameraIntrinsic,checkerSize)
[___] = estimateCheckerboardCorners3d(___ ,Name,Value)

Description
imageCorners3d = estimateCheckerboardCorners3d(I,cameraIntrinsic,checkerSize)
estimates the world frame coordinates of the corner points of a checkerboard in an image, I, by using
the camera intrinsic parameters cameraIntrinsic and the size of the checkerboard squares
checkerSize.

[imageCorners3d,boardDimensions] = estimateCheckerboardCorners3d(I,
cameraIntrinsic,checkerSize) additionally returns the checkerboard dimensions
boardDimensions.

[imageCorners3d,boardDimensions,imagesUsed] = estimateCheckerboardCorners3d(
imageFileNames,cameraIntrinsic,checkerSize) estimates the world frame coordinates of the
corner points of a checkerboard from a set of image files, imageFileNames. The function returns a
logical vector that indicates in which images it detected a checkerboard, imagesUsed, in addition to
output arguments from previous syntaxes.

[___] = estimateCheckerboardCorners3d(imageArray,cameraIntrinsic,checkerSize)
estimates the world frame coordinates of the corner points of a checkerboard from an array of
images, imageArray.

[___] = estimateCheckerboardCorners3d(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to any combination of arguments from previous
syntaxes. For example, 'MinCornerMetric',0.2 sets the threshold for the checkerboard corner
metric to 0.2.

Examples

Detect Checkerboard Corners in Image

Detect a checkerboard in an image using the estimateCheckerboardCorners3d function and
estimate the world frame coordinates of the checkerboard corners.

Read the image into the workspace.

Image = imread("CheckerboardImage.png");

3 Functions

3-116

Load the camera parameters into the workspace.

intrinsic = load("calibration.mat");

Set the size of the checkerboard squares in millimeters.

squareSize = 200;

Estimate the checkerboard corners.

boardCorners = estimateCheckerboardCorners3d(Image, ...
 intrinsic.cameraParams,squareSize)

boardCorners = 4×3

 1.2840 -0.5216 8.8913
 2.8614 0.5774 8.3401
 1.8230 2.0470 8.2984
 0.2455 0.9480 8.8496

Plot the corners on the input image.

imPts = projectLidarPointsOnImage(boardCorners, ...
 intrinsic.cameraParams,rigidtform3d);
J = undistortImage(Image,intrinsic.cameraParams);
imshow(J)
hold on
plot(imPts(:,1),imPts(:,2),".r","MarkerSize",30)
title("Detected Checkerboard Corners")
hold off

 estimateCheckerboardCorners3d

3-117

Input Arguments
I — Image for detection
H-by-W-by-C array

Image for detection, specified as an H-by-W-by-C array where:

• H — Height of the image in pixels
• W — Width of the image in pixels
• C — Number of color channels

Data Types: single | double | int16 | uint8 | uint16

imageFileNames — Image file names
character vector | cell array of character vectors

Image file names, specified as a character vector or cell array of character vectors If specifying more
than one file name, you must use a cell array of character vectors.
Data Types: char | cell

3 Functions

3-118

imageArray — Set of images
H-by-W-by-C-by-N array

Set of images, specified as an H-by-W-by-C-by-N array where:

• H — Height of the tallest image in the array
• W — Width of the widest image in the array
• C — Number of color channels
• N — Number of images in the array

Data Types: single | double | int16 | uint8 | uint16

cameraIntrinsic — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

checkerSize — Size of checkerboard square
scalar

Size of a checkerboard square, specified as a scalar in millimeters. This value specifies the length of
each side of a checkerboard square.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinCornerMetric',0.2 sets the threshold for the checkerboard corner metric to 0.2.

Padding — Padding along each side of checkerboard
[0 0 0 0] (default) | four-element row vector

Padding along each side of checkerboard, specified as the comma-separated pair consisting of
'Padding' and a four-element row vector of nonnegative values in millimeters.

The figure shows how the elements of the vector pad the sides.

 estimateCheckerboardCorners3d

3-119

Checkerboard Padding
Data Types: single | double

MinCornerMetric — Threshold for checkerboard corner metric
0.15 (default) | nonnegative scalar

Threshold for the checkerboard corner metric, specified as the comma-separated pair consisting of
'MinCornerMetric' and a nonnegative scalar. Using a higher threshold value can reduce the
number of false detections in a noisy or highly textured image.
Data Types: single | double

ShowProgressBar — Display function progress
false (default) | true

Display function progress in a progress bar, specified as the comma-separated pair consisting of
'ShowProgressBar' and a logical false or true.
Data Types: logical

Output Arguments
imageCorners3d — Estimated location of checkerboard corners
4-by-3 matrix | 4-by-3-by-P array

Estimated location of checkerboard corners, returned as a 4-by-3 matrix or 4-by-3-by-P array. For one
image, the function returns the 3-D world frame coordinates of the four checkerboard corners. Each
row represents the x-, y- , z-axis coordinates of a corner point in meters. For multiple images, the
coordinates are returned as a 4-by-3-by-P array, where P is the number of images in which a
checkerboard was detected.

boardDimensions — Checkerboard dimensions
two-element row vector

Checkerboard dimensions, returned as a two-element row vector. The elements represent the width
and length of the checkerboard respectively, in millimeters. The dimensions of the checkerboard are
expressed in terms of the number of squares. The function calculates the dimensions of the
checkerboard by multiplying the size of the checkerboard squares, checkerSize, by the number of
detected squares along a side.

3 Functions

3-120

imagesUsed — Pattern detection flag
N-by-1 logical array

Pattern detection flag, returned as an N-by-1 logical array. N is the number of images in the first
input argument. A value of 1 (true) indicates that the function detected a checkerboard pattern in the
corresponding image. A value of 0 (false) indicates that the function did not detect a checkerboard
pattern in the corresponding image.

Limitations
• Partial detection of checkerboard is not supported.

Version History
Introduced in R2020b

See Also
Functions
detectRectangularPlanePoints | estimateLidarCameraTransform

Topics
“Lidar and Camera Calibration”
“Calibration Guidelines”
“What Is Lidar-Camera Calibration?”

 estimateCheckerboardCorners3d

3-121

detectRectangularPlanePoints
Detect rectangular plane of specified dimensions in point cloud

Syntax
ptCloudPlanes = detectRectangularPlanePoints(ptCloudIn,planeDimensions)
[ptCloudPlanes,ptCloudUsed] = detectRectangularPlanePoints(ptCloudArray,
planeDimensions)
[___] = detectRectangularPlanePoints(ptCloudFileNames,planeDimensions)
[ptCloudPlanes,ptCloudUsed,indicesCell] = detectRectangularPlanePoints(___)
[___] = detectRectangularPlanePoints(___ ,Name,Value)

Description
ptCloudPlanes = detectRectangularPlanePoints(ptCloudIn,planeDimensions) detects
and extracts a rectangular plane, ptCloudPlanes, of specified dimensions, planeDimensions,
from the input point cloud ptCloudIn.

[ptCloudPlanes,ptCloudUsed] = detectRectangularPlanePoints(ptCloudArray,
planeDimensions) detects rectangular planes from a set of point clouds, ptCloudArray. In
addition, the function returns a logical vector, ptCloudUsed, that indicates the point clouds in which
it detected a rectangular plane.

[___] = detectRectangularPlanePoints(ptCloudFileNames,planeDimensions) detects
rectangular planes from a set of point cloud files, ptCloudFileNames, and returns any combination
of output arguments from previous syntaxes.

[ptCloudPlanes,ptCloudUsed,indicesCell] = detectRectangularPlanePoints(___)
returns indices to the points within the detected rectangular plane in each point cloud, in addition to
any previous combination of arguments.

[___] = detectRectangularPlanePoints(___ ,Name,Value) specifies options using one or
more name-value pair arguments. For example, 'RemoveGround',true sets the 'RemoveGround'
flag to true, which removes the ground plane from the input point cloud before processing.

Examples

Detect Checkerboard Plane in Point Cloud

Load point cloud data into the workspace. Visualize the input point cloud.

ptCloud = pcread('pcCheckerboard.pcd');
pcshow(ptCloud)
title('Input Point Cloud')
xlim([-5 10])
ylim([-5 10])

3 Functions

3-122

Set the search dimensions for the rectangular plane.

boardSize = [729 810];

Search for the rectangular plane in the point cloud. Visualize the detected rectangular plane.

lidarCheckerboardPlane = detectRectangularPlanePoints(ptCloud,boardSize, ...
 'RemoveGround',true);
hRect = figure;
panel = uipanel('Parent',hRect,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(lidarCheckerboardPlane,'Parent',ax)
title('Rectangular Plane Points')

 detectRectangularPlanePoints

3-123

Visualize the detected rectangular plane on the input point cloud.

figure
pcshowpair(ptCloud,lidarCheckerboardPlane)
title('Detected Rectangular Plane')
xlim([-5 10])
ylim([-5 10])

3 Functions

3-124

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The function searches within this point cloud for a
rectangular plane.

ptCloudArray — Point cloud array
array of pointCloud objects

Point cloud array, specified as a P-by-1 array of pointCloud objects. P is the number of pointCloud
objects in the array. The function searches within each point cloud for a rectangular plane.

ptCloudFileNames — Point cloud file names
character vector | cell array of character vectors

Point cloud file names, specified as a character vector or cell array of character vectors. If specifying
multiple file names, you must use a cell array of character vectors.
Data Types: char | cell

planeDimensions — Rectangular plane dimensions
two-element vector

 detectRectangularPlanePoints

3-125

Rectangular plane dimensions, specified as a two-element vector of positive real numbers. The
elements specify the width and length of the rectangular plane respectively, in millimeters. The
function searches the input point cloud for a plane with the same dimensions as planeDimensions.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RemoveGround',true sets the 'RemoveGround' flag to true, which removes the ground
plane from the input point cloud before processing.

MinDistance — Clustering threshold for two adjacent points
0.5 (default) | positive scalar

Clustering threshold for two adjacent points, specified as the comma-separated pair consisting of
'MinDistance' and a positive scalar in meters. The clustering process is based on the Euclidean
distance between adjacent points. If the distance between two adjacent points is less than the
clustering threshold, both points belong to the same cluster. Low resolution lidars require higher
'MinDistance' threshold and vice-versa.

Note This value should be greater than the minimum distance between two scan lines of the
checkerboard. Too small value for 'MinDistance' might result in incorrect detections.

Data Types: single | double

ROI — Region of interest for detection
vector of form [xmin, xmax, ymin, ymax, zmin, zmax]

Region of interest (ROI) for detection, specified as the comma-separated pair consisting of 'ROI' and
a vector of the form [xmin, xmax, ymin, ymax, zmin, zmax]. The vector specifies the x, y, and z limits
of the ROI as the pairs xmin and xmax, ymin and ymax, zmin and zmax respectively.
Data Types: single | double

DimensionTolerance — Tolerance for uncertainty in rectangular plane dimensions
0.05 (default) | positive scalar in the range [0 1]

Tolerance for uncertainty in the rectangular plane dimensions, specified as the comma-separated pair
consisting of 'DimensionTolerance' and a positive scalar in the range [0 1]. A higher
'DimensionTolerance' indicates a more tolerant range for the rectangular plane dimensions.
Data Types: single | double

RemoveGround — Remove ground plane from point cloud
false or 0 (default) | true or 1

Remove the ground plane from the point cloud, specified as the comma-separated pair consisting of
'RemoveGround' and a logical 0 (false) or 1 (true).

3 Functions

3-126

The normal of the plane is assumed to be aligned with the positive direction of the z-axis with the
reference vector [0 0 1].
Data Types: logical

Verbose — Display function progress
false or 0 (default) | true or 1

Display function progress, specified as the comma-separated pair consisting of 'Verbose' and a
logical 0 (false) or 1 (true).
Data Types: logical

Output Arguments
ptCloudPlanes — Detected rectangular planes
pointCloud object | 1-by-P array of pointCloud objects

Detected rectangular planes, returned as a pointCloud object or 1-by-P array of pointCloud
objects, where P specifies the number of input point clouds in which a rectangular plane was
detected.

ptCloudUsed — Pattern detection flag
1-by-N logical vector

Pattern detection flag, returned as a 1-by-N logical vector. N is the number of input point clouds. A
true value indicates that the function detected a rectangular plane in the corresponding point cloud.
A false value indicates that the function did not detect a rectangular plane.

indicesCell — Indices of detected rectangular planes
1-by-P cell array

Indices of detected rectangular planes, returned as a 1-by-P cell array, where P is the number of input
point clouds in which a rectangular plane was detected. Each cell contains a logical vector that
specifies the indices of the corresponding point cloud at which the function detected a rectangular
plane. The indices can be used to extract the detected plane from the point cloud data.

Version History
Introduced in R2020b

See Also
Functions
estimateCheckerboardCorners3d | estimateLidarCameraTransform |
projectLidarPointsOnImage

Topics
“Lidar and Camera Calibration”

 detectRectangularPlanePoints

3-127

estimateLidarCameraTransform
Estimate rigid transformation from lidar sensor to camera

Syntax
tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners)
tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners,intrinsics)
[tform,errors] = estimateLidarCameraTransform(___)
[___] = estimateLidarCameraTransform(___ ,Name,Value)

Description
tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners) estimates the
transformation between a lidar sensor and a camera using the checkerboard planes extracted from
lidar sensor data and 3-D image corners of the checkerboard extracted from camera data,
respectively.

tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners,intrinsics)
uses the checkerboard planes extracted from a lidar sensor, 2-D or 3-D image corners of the
checkerboard extracted from a camera, and the camera intrinsic parameters to estimate the
transformation between the lidar sensor and the camera.

[tform,errors] = estimateLidarCameraTransform(___) returns the inaccuracy in
estimating the transformation matrix errors using any combination of input arguments in previous
syntaxes.

[___] = estimateLidarCameraTransform(___ ,Name,Value) specifies options using one or
more name-value arguments in addition to any combination of arguments in previous syntaxes. For
example, 'Verbose',true sets the function to display progress.

Examples

Estimate Rigid Transform from Lidar to Camera

Estimate the rigid transformation from a lidar sensor to a camera using data captured from the lidar
sensor and camera calibration parameters. Use these three steps:

1 Load the data into the workspace.
2 Extract the required features from images and point cloud data.
3 Estimate the rigid transformation using the extracted features.

Load Data

Load images and point cloud data into the workspace.

imageDataPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','images');
imds = imageDatastore(imageDataPath);
imageFileNames = imds.Files;

3 Functions

3-128

ptCloudFilePath = fullfile(toolboxdir('lidar'),'lidardata',...
'lcc','vlp16','pointCloud');
pcds = fileDatastore(ptCloudFilePath,'ReadFcn',@pcread);
pcFileNames = pcds.Files;

Load camera calibration files into the workspace.

cameraIntrinsicFile = fullfile(imageDataPath,'calibration.mat');
intrinsic = load(cameraIntrinsicFile);

Feature Extraction

Specify the size of the checkerboard squares in millimeters.

squareSize = 81;

Estimate the checkerboard corner coordinates for the images.

[imageCorners3d,planeDimension,imagesUsed] = estimateCheckerboardCorners3d(...
 imageFileNames,intrinsic.cameraParams,squareSize);

Filter the point clouds based on the images used.

pcFileNames = pcFileNames(imagesUsed);

Detect the checkerboard planes in the filtered point clouds using the plane parameters
planeDimension.

[lidarCheckerboardPlanes,framesUsed] = detectRectangularPlanePoints(...
pcFileNames,planeDimension,'RemoveGround',true);

Extract the images, checkerboard corners, and point clouds in which you detected features.

imagFileNames = imageFileNames(imagesUsed);
imageFileNames = imageFileNames(framesUsed);
pcFileNames = pcFileNames(framesUsed);
imageCorners3d = imageCorners3d(:,:,framesUsed);

Estimate Transformation

Estimate the transformation using checkerboard planes from the point clouds and 3-D checkerboard
corner points from the images.

[tform,errors] = estimateLidarCameraTransform(lidarCheckerboardPlanes, ...
imageCorners3d,intrinsic.cameraParams);

Display translation, rotation, and reprojection errors as bar graphs.

figure
bar(errors.TranslationError)
xlabel('Frame Number')
title('Translation Error (meters)')

 estimateLidarCameraTransform

3-129

figure
bar(errors.RotationError)
xlabel('Frame Number')
title('Rotation Error (degrees)')

3 Functions

3-130

figure
bar(errors.ReprojectionError)
xlabel('Frame Number')
title('Reprojection Error (pixels)')

 estimateLidarCameraTransform

3-131

Input Arguments
ptCloudPlanes — Segmented checkerboard planes
P-by-1 array of pointCloud objects

Segmented checkerboard planes, specified as a pointCloud object or P-by-1 array of pointCloud
objects. P is the number of point clouds. Each pointCloud object must contain points that represent
a checkerboard (rectangular) plane.

P must be equal for both the ptCloudPlanes and imageCorners arguments. This means that
number of point clouds and number of images used for detection must also be equal.

imageCorners — Checkerboard corners extracted from camera data
4-by-2-by-P array | 4-by-3-by-P array

Checkerboard corners extracted from camera data, specified in 2-D or 3-D coordinates.

• 2-D coordinates, specified as a 4-by-2-by-P array. Each row of a channel is of the form of [x y], of a
checkerboard corner extracted from the corresponding camera image. The values are in pixel
coordinates

• 3-D coordinates, specified as a 4-by-3-by-P array. Each row of a channel is of the form of [x y z], of
a checkerboard corner extracted from the corresponding camera image. The values are in world
coordinate system.

3 Functions

3-132

P represents the number of camera images used for detection. P must be equal for both the
ptCloudPlanes and imageCorners arguments. This means that number of point clouds and
number of images used for detection must also be equal.

Note When imageCorners value is in 2-D coordinates, you must specify the camera intrinsic
parameters, intrinsics.

Data Types: single | double

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsics parameters, specified as a cameraIntrinsics object.

Note When imageCorners value is in 2-D coordinates, you must specify the camera intrinsic
parameter, intrinsics. When the imageCorners are in 3-D coordinates, intrinsics is an
optional input.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Verbose=true sets the function to display progress.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose',true sets the function to display progress.

Lidar3DCorners — Checkerboard corners in lidar frame
4-by-3-by-P array

Checkerboard corners in the lidar frame, specified as a 4-by-3-by-P array where P is the number of
point clouds.

If the user specifies the checkerboard corners in the lidar frame, then the function does not calculate
them internally.
Data Types: single | double

InitialTransform — Initial rigid transformation
identity transformation as a rigidtform3d object (default) | rigidtform3d object

Initial rigid transformation, specified as a rigidtform3d object.

The function assumes the rotation angle between the lidar sensor and the camera is in the range [-45
45] along each axis. For any other range of the rotation angle, use this name-value pair to specify an
initial transformation to improve function accuracy.

Verbose — Display function progress
false or 0 (default) | true or 1

 estimateLidarCameraTransform

3-133

Display function progress, specified as a logical 0 (false) or logical 1 (true).
Data Types: logical

Output Arguments
tform — Lidar to camera rigid transformation
rigidtform3d object

Lidar to camera rigid transformation, returned as a rigidtform3d object. The returned object
registers the point cloud data from a lidar sensor to the coordinate frame of a camera.

errors — Inaccuracy in the transformation matrix estimation
structure | P-element numeric array

Inaccuracy of the transformation matrix estimation, returned as a structure or P-element numeric
array.

• The function returns a structure when image corners are in 3-D coordinates. The structure
contains these fields.

• RotationError — The difference between the normal angles defined by the checkerboard
planes in the point clouds (lidar frame) and those in the images (camera frame). The function
estimates the plane in the image using the checkerboard corner coordinates. The function
returns the error values in degrees, as a P-element numeric array. P is the number of point
clouds.

• TranslationError — The difference between the centroid coordinates of checkerboard
planes in the point clouds and those in the images. The function returns the error values in
meters, as a P-element numeric array. P is the number of point clouds.

If you specify camera intrinsic parameters to the function using intrinsics argument, then the
structure contains this additional field.

• ReprojectionError — The difference between the projected (transformed) centroid
coordinates of the checkerboard planes from the point clouds and those in the images. The
function returns the error values in pixels, as a P-element numeric array. P is the number of
point clouds.

• For 2-D image corners, the function only returns the reprojection error.

Version History
Introduced in R2020b

R2022b: Supports rigidtform3d objects
Behavior changed in R2022b

You can now specify the InitialTransform name-value argument as a rigidtform3d object,
which uses the premultiply convention. Although you can still specify InitialTransform as a
rigid3d object, this object is not recommended because it uses the postmultiply convention. For
more information, see “Migrate Geometric Transformations to Premultiply Convention”.

When you specify InitialTransform, the estimateLidarCameraTransform function returns
tform as an object of the same type. When you do not specify InitialTransform, the

3 Functions

3-134

estimateLidarCameraTransform function now returns tform as a rigidtform3d object. Before,
the function returned tform as a rigid3d object.

R2022a: Support for 2-D image corners input

You can specify the imageCorners input in 2-D coordinates. You must additionally specify the
camera intrinsic parameters by using the instrinsics input to estimate the transformation matrix
when image corners are 2-D.

See Also
Functions
detectRectangularPlanePoints | estimateCheckerboardCorners3d |
projectLidarPointsOnImage | fuseCameraToLidar | bboxCameraToLidar

Topics
“Lidar and Camera Calibration”

 estimateLidarCameraTransform

3-135

projectLidarPointsOnImage
Project lidar point cloud data onto image coordinate frame

Syntax
imPts = projectLidarPointsOnImage(ptCloudIn,intrinsics,tform)
imPts = projectLidarPointsOnImage(worldPoints,intrinsics,tform)
[imPts,indices] = projectLidarPointsOnImage(___)
[___] = projectLidarPointsOnImage(___ ,Name,Value)

Description
imPts = projectLidarPointsOnImage(ptCloudIn,intrinsics,tform) projects lidar point
cloud data onto an image coordinate frame using a rigid transformation between the lidar sensor and
camera, tform, and a set of camera intrinsic parameters, intrinsics. The output imPts contains
the 2-D coordinates of the projected points in the image frame.

imPts = projectLidarPointsOnImage(worldPoints,intrinsics,tform) projects lidar
points, specified as 3-D coordinates in the world frame, onto image coordinate frame.

[imPts,indices] = projectLidarPointsOnImage(___) returns the linear indices of the
projected points in the point cloud using any combination of input arguments in previous syntaxes.

[___] = projectLidarPointsOnImage(___ ,Name,Value) specifies options using one or more
name-value arguments in addition to any combination of arguments in previous syntaxes. For
example, 'ImageSize',[250 400] sets the size of the image on which to project the points to 250-
by-400 pixels.

Examples

Overlay Projected Lidar Points on Image

Load ground truth data from a MAT-file into the workspace. Extract the image and point cloud data
from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','sampleColoredPtCloud.mat');
gt = load(dataPath);
img = gt.im;
pc = gt.ptCloud;

Extract the camera intrinsic parameters from the ground truth data.

intrinsics = gt.camParams;

Extract the camera to lidar transformation matrix from the ground truth data, and invert to find the
lidar to camera transformation matrix.

tform = invert(gt.tform);

Downsample the point cloud data.

3 Functions

3-136

p1 = pcdownsample(pc,'gridAverage',0.5);

Project the point cloud onto the image frame.

imPts = projectLidarPointsOnImage(p1,intrinsics,tform);

Overlay the projected points on the image.

figure
imshow(img)
hold on
plot(imPts(:,1),imPts(:,2),'.','Color','r')
hold off

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

worldPoints — Points in world coordinate frame
M-by-3 matrix | M-by-N-by-3 array

Points in the world coordinate frame, specified as an M-by-3 matrix or M-by-N-by-3 array. If you
specify an M-by-3 matrix, each row contains 3-D world coordinates of a point in an unorganized point
cloud that contains M points in total. If you specify an M-by-N-by-3 array, M and N represent the
number of rows and columns, respectively, in an organized point cloud. Each channel of the array
contains the 3-D world coordinates of that point.

 projectLidarPointsOnImage

3-137

Data Types: single | double

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Lidar to camera rigid transformation
rigidtform3d object

Lidar to camera rigid transformation, specified as a rigidtform3d object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ImageSize=[250 400] sets the size of the image on which to project the points to 250-
by-400 pixels.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ImageSize',[250 400] sets the size of the image on which to project the points to 250-
by-400 pixels.

Indices — Indices selected for projection onto image coordinate frame
vector of positive integers

Indices selected for projection onto image coordinate frame, specified as a vector of positive integers.
Data Types: single | double

ImageSize — Size of image on which points are projected
intrinsics.ImageSize (default) | two-element row vector

Size of the image on which the points are projected, specified as a two-element row vector of the
form [width height] in pixels. The function uses the specified dimensions to filter out the projected
points that are not in the field of view of the camera.

If you do no specify the 'ImageSize' argument, then the function uses the ImageSize property
from the camera intrinsic parameters intrinsics to estimate the field of view of the camera.

Note If you specify an 'ImageSize' argument greater than the default argument, then the function
uses the default argument.

Data Types: single | double

Output Arguments
imPts — Points projected on image
M-by-2 matrix

Points projected on image, returned as an M-by-2 matrix. Each row contains the 2-D coordinates, in
the form [x y], a point in the image frame.

3 Functions

3-138

Data Types: single | double

indices — Linear indices of projected points
vector of positive integers

Linear indices of the projected points of the point cloud, returned as a vector of positive integers.
Data Types: single | double

Version History
Introduced in R2020b

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectRectangularPlanePoints | estimateLidarCameraTransform |
estimateCheckerboardCorners3d | fuseCameraToLidar | bboxCameraToLidar

Topics
“Lidar and Camera Calibration”

 projectLidarPointsOnImage

3-139

fuseCameraToLidar
Fuse image information to lidar point cloud

Syntax
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics)
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics,tform)
ptCloudOut = fuseCameraToLidar(___ ,nonoverlapcolor)
[ptCloudOut,colormap] = fuseCameraToLidar(___)
[ptCloudOut,colormap,indices] = fuseCameraToLidar(___)

Description
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics) fuses information from an
image, I, to a specified point cloud, ptCloudIn, using the camera intrinsic parameters,
intrinsics.

The function crops the fused point cloud, ptCloudOut, so that it contains only the points present in
the field of view of the camera.

ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics,tform) uses the camera to
lidar rigid transformation tform to bring the point cloud into image frame before fusing it to the
image information. Use this syntax when the point cloud data is not in the camera coordinate frame.

ptCloudOut = fuseCameraToLidar(___ ,nonoverlapcolor) returns a fused point cloud of the
same size as the input point cloud. The function uses the specified color nonoverlapcolor for
points that are outside the field of view of the camera in addition to any combination of input
arguments from previous syntaxes.

[ptCloudOut,colormap] = fuseCameraToLidar(___) returns the colors of the points
colormap of the fused point cloud.

[ptCloudOut,colormap,indices] = fuseCameraToLidar(___) returns linear indices of the
points in the fused point cloud that are in the field of view of the camera in addition to output
arguments from previous syntaxes.

Examples

Fuse Color Information from Camera to Lidar

Load a MAT file containing ground truth data into the workspace. Extract the image and point cloud
from data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','sampleColoredPtCloud.mat');
gt = load(dataPath);
im = gt.im;
ptCloud = gt.ptCloud;

Plot the extracted point cloud.

3 Functions

3-140

pcshow(ptCloud)
title('Original Point Cloud')

Extract the lidar to camera transformation matrix and camera intrinsic parameters from the ground
truth data.

intrinsics = gt.camParams;
camToLidar = gt.tform;

Fuse the image to the point cloud.

ptCloudOut = fuseCameraToLidar(im,ptCloud,intrinsics,camToLidar);

Visualize the fused point cloud.

pcshow(ptCloudOut)
title('Colored Point Cloud')

 fuseCameraToLidar

3-141

Input Arguments
I — Color or grayscale image
H-by-W-by-C array

Color or grayscale image, specified as an H-by-W-by-C array.

• H — This specifies the height of the image.
• W — This specifies the width of the image.
• C — This specifies the number of color channels in the image. The function supports up to three

color channels in an image.

Data Types: single | double | int16 | uint8 | uint16

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

3 Functions

3-142

tform — Camera to lidar rigid transformation
rigidtform3d object

Camera to lidar rigid transformation, specified as a rigidtform3d object.

nonoverlapcolor — Color specification for points outside camera field of view
color name | short color name | RGB Triplet

Color specification for points outside the camera field of view, specified as a color name, short color
name, or RGB triplet.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some
common colors by name. This table lists the named color options and the equivalent RGB triplet
values.

Color Name Color Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Data Types: single | double | char

Output Arguments
ptCloudOut — Fused point cloud
pointCloud object

Fused point cloud, returned as a pointCloud object.

colormap — Point cloud color map
M-by-3 matrix of real values in the range [0, 1] | M-by-N-by-3 array of real values in the range [0,
1]

Point cloud color map, returned as one of these options:

• M-by-3 matrix — For unorganized point clouds
• M-by-N-by-3 array — For organized point clouds

Each row of the matrix or channel of the array contains the RGB triplet for the corresponding point in
the point cloud. The function returns them as real values in the range [0, 1]. If you do not specify a
nonoverlapcolor argument, then the color value for points outside the field of view of the camera
is [0 0 0] (black).
Data Types: uint8

 fuseCameraToLidar

3-143

indices — Linear indices of fused point cloud points in camera field of view
vector of positive integers

Linear indices of the fused point cloud points in the camera field of view, returned as a vector of
positive integers.
Data Types: single | double

Version History
Introduced in R2020b

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
detectRectangularPlanePoints | estimateLidarCameraTransform |
estimateCheckerboardCorners3d | projectLidarPointsOnImage | bboxCameraToLidar

Topics
“Lidar and Camera Calibration”

3 Functions

3-144

bboxCameraToLidar
Estimate 3-D bounding boxes in point cloud from 2-D bounding boxes in image

Syntax
bboxesLidar = bboxCameraToLidar(bboxesCamera,ptCloudIn,intrinsics,tform)
[bboxesLidar,indices] = bboxCameraToLidar(___)
[bboxesLidar,indices,boxesUsed] = bboxCameraToLidar(___)
[___] = bboxCameraToLidar(___ ,Name,Value)

Description
bboxesLidar = bboxCameraToLidar(bboxesCamera,ptCloudIn,intrinsics,tform)
estimates 3-D bounding boxes in a point cloud frame, ptCloudIn, from 2-D bounding boxes in an
image, bboxesCamera. The function uses camera intrinsic parameters, intrinsics, and a camera
to lidar transformation matrix, tform, to estimate the 3-D bounding boxes, bboxesLidar.

[bboxesLidar,indices] = bboxCameraToLidar(___) returns the indices of the point cloud
points that are inside the 3-D bounding boxes using the input arguments from the previous syntax.

[bboxesLidar,indices,boxesUsed] = bboxCameraToLidar(___) indicates for which of the
specified 2-D bounding boxes the function detected a corresponding 3-D bounding box in the point
cloud.

[___] = bboxCameraToLidar(___ ,Name,Value) specifies options using one or more name-
value arguments in addition to any of the argument combinations in previous syntaxes. For example,
'ClusterThreshold',0.5 sets the Euclidean distance threshold for differentiating point cloud
clusters to 0.5 world units.

Examples

Transfer Bounding Box from Image to Point Cloud

Load ground truth data from a MAT-file into the workspace. Extract the image, point cloud data, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the camera to lidar transformation matrix from the ground truth data.

tform = gt.camToLidar;

Extract the 2-D bounding box information.

bboxImage = gt.box;

 bboxCameraToLidar

3-145

Display the 2-D bounding box overlaid on the image.

annotatedImage = insertObjectAnnotation(im,'Rectangle',bboxImage,'Vehicle');
figure
imshow(annotatedImage)

Estimate the bounding box in the point cloud.

[bboxLidar,indices] = ...
bboxCameraToLidar(bboxImage,pc,intrinsics,tform,'ClusterThreshold',1);

Display the 3-D bounding box overlaid on the point cloud.

figure
pcshow(pc)
xlim([0 50])
ylim([0 20])
showShape('cuboid',bboxLidar,'Opacity',0.5,'Color','green')

3 Functions

3-146

Input Arguments
bboxesCamera — 2-D bounding boxes in camera frame
M-by-4 matrix of real values

2-D bounding boxes in the camera frame, specified as an M-by-4 matrix of real values. Each row of
the matrix contains the location and size of a rectangular bounding box in the form [x y width height].
The x and y elements specify the x and y coordinates, respectively, for the upper-left corner of the
rectangle. The width and height elements specify the size of the rectangle. M is the number of
bounding boxes.

Note The function assumes that the image data that corresponds to the 2-D bounding boxes and the
point cloud data are time synchronized.

Data Types: single | double

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

 bboxCameraToLidar

3-147

Note The function assumes that the point cloud is in the vehicle coordinate system, where the x-axis
points forward from the ego vehicle.

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Camera to lidar rigid transformation
rigidtform3d object

Camera to lidar rigid transformation, specified as a rigidtform3d object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ClusterThreshold=0.5 sets the Euclidean distance threshold for differentiating point
cloud clusters to 0.5 world units.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ClusterThreshold',0.5 sets the Euclidean distance threshold for differentiating point
cloud clusters to 0.5 world units.

ClusterThreshold — Clustering threshold for two adjacent points
1 (default) | positive scalar

Clustering threshold for two adjacent points, specified as a positive scalar. The clustering process is
based on the Euclidean distance between two adjacent points. If the distance between two adjacent
points is less than the specified clustering threshold, then the points belong to the same cluster. If the
function returns a 3-D bounding box that is smaller than expected, try specifying a higher
'ClusterThreshold' value.
Data Types: single | double

MaxDetectionRange — Range of detection from lidar sensor
[1e–6 Inf] (default) | two-element vector of real values in the range (0, Inf]

Range of detection from lidar sensor, specified as a two-element vector of real values in the range (0,
Inf]. The first element of the vector specifies the shortest distance from the sensor at which to
search for bounding boxes, and the second element specifies the distance at which the function stops
searching. The value of Inf indicates the outermost points of the point cloud.

The first element must be smaller than the second element. Specify both in world units.
Data Types: single | double

Output Arguments
bboxesLidar — 3-D bounding boxes in lidar frame
N-by-9 matrix of real values

3 Functions

3-148

3-D bounding boxes in the lidar frame, returned as an N-by-9 matrix of real values. N is the number
of detected 3-D bounding boxes. Each row of the matrix has the form [xctr yctr zctr xlen ylen zlen xrot yrot
zrot].

• xctr, yctr, and zctr — These values specify the x-, y-, and z-axis coordinates, respectively, of the
center of the cuboid bounding box.

• xlen, ylen, and zlen — These values specify the length of the cuboid along the x-, y-, and z-axis,
respectively, before it is rotated.

• xrot, yrot, and zrot — These values specify the rotation angles of the cuboid around the x-, y-, and z-
axis, respectively. These angles are clockwise-positive when looking in the forward direction of
their corresponding axes.

This figure shows how these values determine the position of a cuboid.

Data Types: single | double

indices — Indices of points inside 3-D bounding boxes
column vector | N-element cell array

Indices of the points inside the 3-D bounding boxes, returned as a column vector or an N-element cell
array.

If the function detects only one 3-D bounding box in the point cloud, it returns a column vector. Each
element of the vector is the point cloud index of a point detected in the 3-D bounding box.

 bboxCameraToLidar

3-149

If the function detects multiple 3-D bounding boxes, it returns an N-element cell array. N is the
number of 3-D bounding boxes detected in the point cloud, and each element of the cell array
contains the point cloud indices of the points detected in the corresponding 3-D bounding box.
Data Types: single | double

boxesUsed — Bounding box detection flag
M-element row vector of logicals

Bounding box detection flag, returned as an M-element row vector of logicals. M is the number of
input 2-D bounding boxes. If the function detects a corresponding 3-D bounding box in the point
cloud, then it returns a value of true for that input 2-D bounding box. If the function does not detect
a corresponding 3-D bounding box, then it returns a value of false.
Data Types: logical

Version History
Introduced in R2020b

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bboxLidarToCamera | projectLidarPointsOnImage | fuseCameraToLidar

Topics
“Lidar and Camera Calibration”

3 Functions

3-150

pcmatchfeatures
Find matching features between point clouds

Syntax
indexPairs = pcmatchfeatures(features1,features2)
indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2)
[indexPairs,scores] = pcmatchfeatures(___)
[___] = pcmatchfeatures(___ ,Name,Value)

Description
indexPairs = pcmatchfeatures(features1,features2) finds matching features between the
input matrices of extracted point cloud features and returns their indices within each feature matrix.

indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2) rejects
ambiguous feature matches based on spatial relation information from the point clouds
corresponding to the feature matrices.

[indexPairs,scores] = pcmatchfeatures(___) returns the normalized Euclidean distances
between the matching features using any combination of input arguments from previous syntaxes.

[___] = pcmatchfeatures(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any combination of arguments in previous syntaxes. For example,
'MatchThreshold',0.03 sets the normalized distance threshold for matching features to 0.03.

Examples

Match Corresponding Features in Point Clouds

This example shows how to match corresponding point cloud features using the pcmatchfeatures
function.

Preprocessing

Read point cloud data into the workspace.

ptCld = pcread("teapot.ply");

Downsample the point cloud.

ptCloud = pcdownsample(ptCld,"gridAverage",0.05);

Transform and create a new point cloud using the transformation matrix A.

A = [cos(pi/6) -sin(pi/6) 0 5; ...
 sin(pi/6) cos(pi/6) 0 5; ...
 0 0 1 10; ...
 0 0 0 1];
tform = affinetform3d(A);
ptCloudTformed = pctransform(ptCloud,tform);

 pcmatchfeatures

3-151

Visualize the two point clouds.

pcshowpair(ptCloud,ptCloudTformed);
legend("Original", "Transformed","TextColor",[1 1 0]);

Match Corresponding Features

In the preprocessing section, we created a second point cloud by translating and rotating the original
point cloud. In this section, we use the pcmatchfeatures function to find matching features
between these point clouds.

Extract features from both the point clouds using the extractFPFHFeatures function.

fixedFeature = extractFPFHFeatures(ptCloud);
movingFeature = extractFPFHFeatures(ptCloudTformed);
length(movingFeature)

ans = 16578

Find matching features.

[matchingPairs,scores] = pcmatchfeatures(fixedFeature,movingFeature,ptCloud,ptCloudTformed);
length(matchingPairs)

ans = 3397

A score close to zero means that the algorithm is confident about a match and vice-versa. Calculate
the mean score for all the matches using the scores vector.

3 Functions

3-152

mean(scores)

ans = 0.0017

Input Arguments
features1 — First feature set
M1-by-N matrix

First feature set, specified as an M1-by-N matrix. The matrix contains M1 features, and N is the length
of each feature vector. Each row represents a single feature.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

features2 — Second feature set
M2-by-N matrix

Second feature set, specified as an M2-by-N matrix. The matrix contains M2 features, and N is the
length of each feature vector. Each row represents a single feature.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

ptCloud1 — First point cloud
pointCloud object

First point cloud, specified as a pointCloud object.

ptCloud2 — Second point cloud
pointCloud object

Second point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MatchThreshold',0.03 sets the normalized distance threshold for matching features to
0.03.

Method — Matching method
'Exhaustive' (default) | 'Approximate'

Matching method, specified as the comma-separated pair consisting of 'Method' and either
'Exhaustive' or 'Approximate'. The method determines how the function finds the nearest
neighbors between features1 and features2. Two feature vectors match when the distance
between them is less or equal to the matching threshold.

• 'Exhaustive' — Compute the pairwise distance between the specified feature vectors.
• 'Approximate' — Use an efficient approximate nearest neighbor search. Use this method for

large feature sets. For more information about the algorithm, see [1]

 pcmatchfeatures

3-153

Data Types: char | string

MatchThreshold — Matching threshold
0.01 (default) | scalar in the range (0, 1]

Matching threshold, specified as the comma-separated pair consisting of 'MatchThreshold' and a
scalar in the range (0, 1].

Two feature vectors match when the normalized Euclidean distance between them is less than or
equal to the matching threshold. A higher value may result in additional matches, but increases the
risk of false positives.
Data Types: single | double

RejectRatio — Spatial relation threshold
0.95 (default) | scalar in the range (0,1)

Spatial relation threshold, specified as the comma-separated pair consisting of 'RejectRatio' and
a scalar in the range (0,1).

The function uses point cloud data to estimate the spatial relation between the points associated with
potential feature matches and reject matches based on the spatial relation threshold. A lower spatial
relation threshold may result in additional matches, but increases the risk of false positives.

The function does not consider the spatial relation threshold if you do not specify values for the
ptCloud1 and ptCloud2 input arguments.

Note At least three features must be matched between the feature matrices to consider the spatial
relation.

Data Types: single | double

Output Arguments
indexPairs — Indices of matched features
P-by-2 matrix

Indices of matched features, returned as a P-by-2 matrix. P is the number of matched features. Each
row corresponds to a matched feature between the features1 and features2 inputs, where the
first element is the index of the feature in features1 and the second element is the index of the
matching feature in features2.
Data Types: uint32

scores — Normalized Euclidean distance between matching features
P-element column vector

Normalized Euclidean distance between matching features, returned as a P-element column vector.
The ith element of the vector is the distance between the matched features in the ith row of the
indexPairs output.
Data Types: single | double

3 Functions

3-154

Version History
Introduced in R2020b

References
[1] Muja, Marius and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration." In Proceedings of the Fourth International Conference on Computer Vision
Theory and Applications, 331-40. Lisboa, Portugal: SciTePress - Science and Technology
Publications, 2009. https://doi.org/10.5220/0001787803310340.

[2] Zhou, Qian-Yi, Jaesik Park, and Vladlen Koltun. "Fast global registration." In European Conference
on Computer Vision, pp. 766-782. Springer, Cham, 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcshowMatchedFeatures | extractFPFHFeatures

 pcmatchfeatures

3-155

pcshowMatchedFeatures
Display point clouds with matched feature points

Syntax
pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPtCloud1,matchedPtCloud2)
pcshowMatchedFeatures(segments1,segments2,features1,features2)
ax = pcshowMatchedFeatures(___)
[___] = pcshowMatchedFeatures(___ ,Name,Value)

Description
pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPtCloud1,matchedPtCloud2)
displays point clouds, ptCloud1 and ptCloud2, with their matched feature points,
matchedPtCloud1 and matchedPtCloud2. The plot is color coded by point cloud and each
connected to the corresponding point in the other point cloud by a line.

pcshowMatchedFeatures(segments1,segments2,features1,features2) displays the point
cloud segments, segments1 and segments2, with their corresponding centroids in the “Centroid”
on page 2-0 property of features1 and features2. The plot is color coded and the
corresponding centroids are connected by a line.

ax = pcshowMatchedFeatures(___) additionally returns an Axes object using the input
arguments from the previous syntax.

[___] = pcshowMatchedFeatures(___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to any combination of arguments in previous syntaxes. For
example, 'Method','montage' visualizes the point clouds next to each other in the axes.

Examples

Visualize Matching Features in Point Clouds

This example shows how to visualize matching point cloud features using the
pcshowMatchedFeatures function. The example uses features calculated using
extractFPFHFeatures function.

Load the required files into the workspace.

load("features1.mat");
load("features2.mat");
load("ptCloud1.mat");
load("ptCloud2.mat");

Match features between two point clouds.

indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2);

Create point clouds of only the points in each point cloud with matching features in the other point
cloud.

3 Functions

3-156

matchedPts1 = select(ptCloud1,indexPairs(:,1));
matchedPts2 = select(ptCloud2,indexPairs(:,2));

Visualize the matches.

pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPts1,matchedPts2, ...
 "Method","montage")
xlim([-40 210])
ylim([-50 50])
title("Matched Points")

The matched features and point clouds are color coded to improve visualization:

• Magenta — Moving point cloud.
• Green — Fixed point cloud.
• Red circle — Matched points in the moving point cloud.
• Blue asterisk — Matched points in the fixed point cloud.
• Yellow — Line connecting matched features.

Match Eigenvalue-Based Features Between Point Clouds

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

 pcshowMatchedFeatures

3-157

Read the first and fourth scans from the file.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,4);

Remove the ground plane from the scans.

maxDistance = 1; % in meters
referenceVector = [0 0 1];
[~,~,selectIdx] = pcfitplane(ptCloud1,maxDistance,referenceVector);
ptCloud1 = select(ptCloud1,selectIdx,'OutputSize','full');
[~,~,selectIdx] = pcfitplane(ptCloud2,maxDistance,referenceVector);
ptCloud2 = select(ptCloud2,selectIdx,'OutputSize','full');

Cluster the point clouds with a minimum of 10 points per cluster.

minDistance = 2; % in meters
minPoints = 10;
labels1 = pcsegdist(ptCloud1,minDistance,'NumClusterPoints',minPoints);
labels2 = pcsegdist(ptCloud2,minDistance,'NumClusterPoints',minPoints);

Extract eigen-value features and the corresponding segments from each point cloud.

[eigFeatures1,segments1] = extractEigenFeatures(ptCloud1,labels1);
[eigFeatures2,segments2] = extractEigenFeatures(ptCloud2,labels2);

Create matrices of the features and centroids extracted from each point cloud, for matching.

features1 = vertcat(eigFeatures1.Feature);
features2 = vertcat(eigFeatures2.Feature);
centroids1 = vertcat(eigFeatures1.Centroid);
centroids2 = vertcat(eigFeatures2.Centroid);

Find putative feature matches.

indexPairs = pcmatchfeatures(features1,features2, ...
 pointCloud(centroids1),pointCloud(centroids2));

Get the matched segments and features for visualization.

matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));

Visualize the matches.

figure
pcshowMatchedFeatures(matchedSegments1,matchedSegments2,matchedFeatures1,matchedFeatures2)
title('Matched Segments')

3 Functions

3-158

Input Arguments
ptCloud1 — First point cloud
pointCloud object

First point cloud, specified as a pointCloud object.

ptCloud2 — Second point cloud
pointCloud object

Second point cloud, specified as a pointCloud object.

matchedPtCloud1 — Matched points in first point cloud
pointCloud object

Matched points in the first point cloud, specified as a pointCloud object. Each point is a feature
match for the point with the corresponding index in matchedPtCloud2.

matchedPtCloud2 — Matched points in second point cloud
pointCloud object

Matched points in the second point cloud, specified as a pointCloud object. Each point is a feature
match for the point with the corresponding index in matchedPtCloud1.

 pcshowMatchedFeatures

3-159

segments1 — Point cloud segments
M-element vector of pointCloud objects

Point cloud segments, specified as a M-element vector of pointCloud objects.

segments2 — Point cloud segments
M-element vector of pointCloud objects

Point cloud segments, specified as a M-element vector of pointCloud objects.

features1 — Corresponding centroids in first segment features
M-element vector of eigenFeature objects

Corresponding centroids in the first segment features, specified as a M-element vector of
eigenFeature objects. The “Centroid” on page 2-0 property of each feature in features1 is
plotted with a red circle by default.

features2 — Corresponding centroids in second segment features
M-element vector of eigenFeature objects

Corresponding centroids in the second segment features, specified as a M-element vector of
eigenFeature objects. The “Centroid” on page 2-0 property of each feature in features2 is
plotted with a blue asterisk by default.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Method','montage' visualizes the point clouds next to each other in the axes.

Method — Display method
'overlay' (default) | 'montage'

Display method, specified as the comma-separated pair consisting of 'Method' and one of these
options:

• 'overlay' — Overlay ptCloud2 on ptCloud1.
• 'montage' — Display ptCloud1 and ptCloud2 next to each other in the same axes.

Data Types: char | string

PlotOptions — Line style and color options
{'ro','b*','y-'} (default) | cell array of character vectors

Line style and color options, specified as the comma-separated pair consisting of 'PlotOptions'
and a cell array of character vectors of the form {MarkerStyle1, MarkerStyle2, LineStyle}.
MarkerStyle1 specifies the color and marker symbol for the matched points matchedPtCloud1 in
the first point cloud ptCloud1. MarkerStyle2 specifies the color and marker symbol for the matched
points matchedPtCloud2 in the second point cloud ptCloud2. LineStyle specifies the color and line
style of the lines connecting the matched points of the first point cloud to the matched points of the
second. For more information on line styles, marker symbols, and colors, see LineSpec.

3 Functions

3-160

Data Types: char

Parent — Output axes
axes graphics object

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes graphics
object.

Output Arguments
ax — Axes handle
axes graphics object

Axes handle, returned as an axes graphics object.

Version History
Introduced in R2020b

See Also
Functions
pcmatchfeatures | extractFPFHFeatures | extractEigenFeatures | pcmapsegmatch

Objects
eigenFeature | pointCloud

Topics
“Lidar Localization Using Segment Matching” on page 2-134
“Build Map and Localize Using Segment Matching”

 pcshowMatchedFeatures

3-161

squeezesegv2Layers
Create SqueezeSegV2 segmentation network for organized lidar point cloud

Syntax
lgraph = squeezesegv2Layers(inputSize,numClasses)
lgraph = squeezesegv2Layers(___ ,Name,Value)

Description
lgraph = squeezesegv2Layers(inputSize,numClasses) returns a SqueezeSegV2 layer graph
lgraph for organized point clouds of size inputSize and the number of classes numClasses.

SqueezeSegV2 is a convolutional neural network that predicts pointwise labels for an organized lidar
point cloud.

Use the squeezesegv2Layers function to create the network architecture for SqueezeSegV2. This
function requires Deep Learning Toolbox.

lgraph = squeezesegv2Layers(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. For example,
'NumEncoderModules',4 sets the number of encoders used to create the network to four.

Examples

Create Standard SqueezeSegV2 Network

Set the network input parameters.

inputSize = [64 512 5];
numClasses = 4;

Create a SqueezeSegV2 layer graph.

lgraph = squeezesegv2Layers(inputSize,numClasses)

lgraph =
 LayerGraph with properties:

 InputNames: {'input'}
 OutputNames: {'focalloss'}
 Layers: [168x1 nnet.cnn.layer.Layer]
 Connections: [186x2 table]

Display the network.

analyzeNetwork(lgraph)

3 Functions

3-162

Create Custom SqueezeSegV2 Network

Set the network input parameters.

inputSize = [64 512 6];
numClasses = 2;

Create a custom SqueezeSegV2 layer graph.

lgraph = squeezesegv2Layers(inputSize,numClasses, ...
'NumEncoderModules',4,'NumContextAggregationModules',2)

lgraph =
 LayerGraph with properties:

 InputNames: {'input'}
 OutputNames: {'focalloss'}
 Layers: [232x1 nnet.cnn.layer.Layer]
 Connections: [257x2 table]

Display the network.

analyzeNetwork(lgraph)

Input Arguments
inputSize — Size of network input
two-element row vector | three-element row vector

Size of the network input, specified as one of these options:

• Two-element vector of the form [height width].
• Three-element vector of the form [height width channels], where channels specifies the number of

input channels. Set channels to 3 for RGB images, to 1 for grayscale images, or to the number of
channels for multispectral and hyperspectral images.

numClasses — Number of classes
integer greater than 1

Number of semantic segmentation classes, specified as an integer greater than 1.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumEncoderModules',4 sets the number of encoders used to create the network to four.

NumEncoderModules — Number of encoder modules
2 (default) | nonnegative integer

Number of encoder modules used to create the network, specified as the comma-separated pair
consisting of 'NumEncoderModules' and a nonnegative integer. Each encoder module consists of

 squeezesegv2Layers

3-163

two fire modules and one max-pooling layer connected sequentially. If you specify 0, then the function
returns a network with a default encoder that consists of convolution and max-pooling layers with no
fire modules. Use this name-value pair to customize the number of fire modules in the network.

NumContextAggregationModules — Number of context aggregation modules
3 (default) | integer in the range [0,3]

Number of context aggregation modules (CAMs), specified as the comma-separated pair consisting of
'NumContextAggregationModules' and an integer in the range [0,3]. If you specify 0, then the
function creates a network without a CAM.

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the SqueezeSegV2 network architecture, returned as a layerGraph object.

More About
SqueezeSegV2 Network

• A SqueezeSegV2 network consists of encoder modules, CAMs, intermediate fixed fire modules [1]
for feature extraction, and decoder modules. The function automatically configures the number of
decoder modules based on the specified number of encoder modules.

• The function uses narrow-normal weight initialization method to initialize the weights of each
convolution layer within encoder and decoder subnetworks .

• The function initializes all bias terms to zero.
• The function adds the padding for all convolution and max-pooling layers such that the output has

the same size as the input (if the stride equals 1).
• The height of the input tensor is significantly lower than the width in organized lidar point cloud

data. To address this, the network downsamples the width dimension of the input data in
convolution and max-pooling layers. The width of the input data must be a multiple of 2(D + 2),
where D is the number of encoder modules used to create the network.

• This function does not provide a recurrent conditional random field (CRF) layer.

Version History
Introduced in R2020b

References
[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:

Improved Model Structure and Unsupervised Domain Adaptation for Road-Object
Segmentation from a LiDAR Point Cloud.” In 2019 International Conference on Robotics and
Automation (ICRA), 4376–82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/
ICRA.2019.8793495.

3 Functions

3-164

https://doi.org/10.1109/ICRA.2019.8793495
https://doi.org/10.1109/ICRA.2019.8793495

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
semanticseg | trainNetwork | evaluateSemanticSegmentation

Objects
focalLossLayer | pixelClassificationLayer | layerGraph | DAGNetwork

Topics
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”

 squeezesegv2Layers

3-165

matchScans
Estimate pose between two laser scans

Syntax
pose = matchScans(currScan,refScan)
pose = matchScans(currRanges,currAngles,refRanges,refAngles)
[pose,stats] = matchScans(___)
[___] = matchScans(___ ,Name,Value)

Description
pose = matchScans(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using the normal distributions transform (NDT).

pose = matchScans(currRanges,currAngles,refRanges,refAngles) finds the relative pose
between two laser scans specified as ranges and angles.

[pose,stats] = matchScans(___) returns additional statistics about the scan match result
using the previous input arguments.

[___] = matchScans(___ ,Name,Value) specifies additional options specified by one or more
Name,Value pair arguments.

Examples

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);
subplot(2,1,1);
hold on
plot(currScan)

3 Functions

3-166

plot(refScan)
title('Original Scans')
hold off
subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

 matchScans

3-167

currRanges — Current laser scan ranges
vector in meters

Current laser scan ranges, specified as a vector. Ranges are given as distances to objects measured
from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

currAngles — Current laser scan angles
vector in radians

Current laser scan angles, specified as a vector in radians. Angles are given as the orientations of the
corresponding range measurements.

refRanges — Reference laser scan ranges
vector in meters

Reference laser scan ranges, specified as a vector in meters. Ranges are given as distances to objects
measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

refAngles — Reference laser scan angles
vector in radians

Reference laser scan angles, specified as a vector in radians. Angles are given as the orientations of
the corresponding range measurements.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "InitialPose",[1 1 pi/2]

SolverAlgorithm — Optimization algorithm
"trust-region" (default) | "fminunc"

Optimization algorithm, specified as either "trust-region" or "fminunc". Using "fminunc"
requires an Optimization Toolbox™ license.

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of "InitialPose" and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

CellSize — Length of cell side
1 (default) | numeric scalar

Length of a cell side in meters, specified as the comma-separated pair consisting of "CellSize" and
a numeric scalar. matchScans uses the cell size to discretize the space for the NDT algorithm.

3 Functions

3-168

Tuning the cell size is important for proper use of the NDT algorithm. The optimal cell size depends
on the input scans and the environment of your robot. Larger cell sizes can lead to less accurate
matching with poorly sampled areas. Smaller cell sizes require more memory and less variation
between subsequent scans. Sensor noise influences the algorithm with smaller cell sizes as well.
Choosing a proper cell size depends on the scale of your environment and the input data.

MaxIterations — Maximum number of iterations
400 (default) | scalar integer

Maximum number of iterations, specified as the comma-separated pair consisting of
"MaxIterations" and a scalar integer. A larger number of iterations results in more accurate pose
estimates, but at the expense of longer execution time.

ScoreTolerance — Lower bounds on the change in NDT score
1e-6 (default) | numeric scalar

Lower bound on the change in NDT score, specified as the comma-separated pair consisting of
"ScoreTolerance" and a numeric scalar. The NDT score is stored in the Score field of the output
stats structure. Between iterations, if the score changes by less than this tolerance, the algorithm
converges to a solution. A smaller tolerance results in more accurate pose estimates, but requires a
longer execution time.

Output Arguments
pose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following fields:

• Score — Numeric scalar representing the NDT score while performing scan matching. This score
is an estimate of the likelihood that the transformed current scan matches the reference scan.
Score is always nonnegative. Larger scores indicate a better match.

• Hessian — 3-by-3 matrix representing the Hessian of the NDT cost function at the given pose
solution. The Hessian is used as an indicator of the uncertainty associated with the pose estimate.

Version History
Introduced in R2020b

References
[1] Biber, P., and W. Strasser. "The Normal Distributions Transform: A New Approach to Laser Scan

Matching." Intelligent Robots and Systems Proceedings. 2003.

[2] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform -- an Efficient
Representation for Registration, Surface Analysis, and Loop Detection." PhD Dissertation.
Örebro University, School of Science and Technology, 2009.

 matchScans

3-169

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is supported for the default SolverAlgorithm, "trust-region". You cannot use
the "fminunc" algorithm in code generation.

See Also
Functions
matchScansGrid | matchScansLine | lidarScan

Classes
occupancyMap | monteCarloLocalization

3 Functions

3-170

matchScansGrid
Estimate pose between two lidar scans using grid-based search

Syntax
pose = matchScansGrid(currScan,refScan)
[pose,stats] = matchScansGrid(___)
[___] = matchScansGrid(___ ,Name,Value)

Description
pose = matchScansGrid(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using a grid-based search. matchScansGrid converts
lidar scan pairs into probabilistic grids and finds the pose between the two scans by correlating their
grids. The function uses a branch-and-bound strategy to speed up computation over large discretized
search windows.

[pose,stats] = matchScansGrid(___) returns additional statistics about the scan match
result using the previous input arguments.

[___] = matchScansGrid(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments. For example, 'InitialPose',[1 1 pi/2] specifies an initial pose estimate for
scan matching.

Examples

Match Scans Using Grid-Based Search

Perform scan matching using a grid-based search to estimate the pose between two laser scans.
Generate a probabilistic grid from the scans and estimate the pose difference from those grids.

Load the laser scan data. These two scans are from an actual lidar sensor with changes in the robot
pose and are stored as lidarScan objects.

load laserScans.mat scan scan2
plot(scan)
hold on
plot(scan2)
hold off

 matchScansGrid

3-171

Use matchScansGrid to estimate the pose between the two scans.

relPose = matchScansGrid(scan2,scan);

Using the estimated pose, transform the current scan back to the reference scan. The scans overlap
closely when you plot them together.

scan2Tformed = transformScan(scan2,relPose);
plot(scan)
hold on
plot(scan2Tformed)
hold off

3 Functions

3-172

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'InitialPose',[1 1 pi/2]

 matchScansGrid

3-173

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of 'InitialPose' and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

Resolution — Grid cells per meter
20 (default) | positive integer

Grid cells per meter, specified as the comma-separated pair consisting of 'Resolution' and a
positive integer. The accuracy of the scan matching result is accurate up to the grid cell size.

MaxRange — Maximum range of lidar sensor
8 (default) | positive scalar

Maximum range of lidar sensor, specified as the comma-separated pair consisting of 'MaxRange'
and a positive scalar.

TranslationSearchRange — Search range for translation
[4 4] (default) | [x y] vector

Search range for translation, specified as the comma-separated pair consisting of
'TranslationSearchRange' and an [x y] vector. These values define the search window in
meters around the initial translation estimate given in InitialPose. If the InitialPose is given as
[x0 y0], then the search window coordinates are [x0-x x0+x] and [y0-y y0+y]. This parameter
is used only when InitialPose is specified.

RotationSearchRange — Search range for rotation
pi/4 (default) | positive scalar

Search range for rotation, specified as the comma-separated pair consisting of
'RotationSearchRange' and a positive scalar. This value defines the search window in radians
around the initial rotation estimate given in InitialPose. If the InitialPose rotation is given as
th0, then the search window is [th0-a th0+a], where a is the rotation search range. This
parameter is used only when InitialPose is specified.

Output Arguments
pose — Pose of current scan
[x y theta] vector

Pose of current scan relative to the reference scan, returned as an [x y theta] vector, where [x
y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following field:

• Score — Numeric scalar representing the score while performing scan matching. This score is an
estimate of the likelihood that the transformed current scan matches the reference scan. Score is
always nonnegative. Larger scores indicate a better match, but values vary depending on the lidar
data used.

3 Functions

3-174

• Covariance — Estimated covariance representing the confidence of the computed relative pose,
returned as a 3-by-3 matrix.

Version History
Introduced in R2020b

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop Closure in 2D

LIDAR SLAM." 2016 IEEE International Conference on Robotics and Automation (ICRA).
2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
matchScans | matchScansLine | lidarScan

Classes
lidarSLAM

 matchScansGrid

3-175

matchScansLine
Estimate pose between two laser scans using line features

Syntax
relpose = matchScansLine(currScan,refScan,initialRelPose)
[relpose,stats] = matchScansLine(___)
[relpose,stats,debugInfo] = matchScansLine(___)
[___] = matchScansLine(___ ,Name,Value)

Description
relpose = matchScansLine(currScan,refScan,initialRelPose) estimates the relative
pose between two scans based on matched line features identified in each scan. Specify an initial
guess on the relative pose, initialRelPose.

[relpose,stats] = matchScansLine(___) returns additional information about the covariance
and exit condition in stats as a structure using the previous inputs.

[relpose,stats,debugInfo] = matchScansLine(___) returns additional debugging info,
debugInfo, from the line-based scan matching result.

[___] = matchScansLine(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Estimate Pose of Scans with Line Features

This example shows how to use the matchScansLine function to estimate the relative pose between
lidar scans given an initial estimate. The identified line features are visualized to show how the scan-
matching algorithm associates features between scans.

Load a pair of lidar scans. The .mat file also contains an initial guess of the relative pose difference,
initGuess, which could be based on odometry or other sensor data.

load tb3_scanPair.mat
plot(s1)
hold on
plot(s2)
hold off

3 Functions

3-176

Set parameters for line feature extraction and association. The noise of the lidar data determines the
smoothness threshold, which defines when a line break occurs for a specific line feature. Increase
this value for more noisy lidar data. The compatibility scale determines when features are considered
matches. Increase this value for looser restrictions on line feature parameters.

smoothnessThresh = 0.2;
compatibilityScale = 0.002;

Call matchScansLine with the given initial guess and other parameters specified as name-value
pairs. The function calculates line features for each scan, attempts to match them, and uses an
overall estimate to get the difference in pose.

[relPose, stats, debugInfo] = matchScansLine(s2, s1, initGuess, ...
 'SmoothnessThreshold', smoothnessThresh, ...
 'CompatibilityScale', compatibilityScale);

After matching the scans, the debugInfo output gives you information about the detected line
feature parameters, [rho alpha], and the hypothesis of which features match between scans.

debugInfo.MatchHypothesis states that the first, second, and sixth line feature in s1 match the
fifth, second, and fourth features in s2.

debugInfo.MatchHypothesis

ans = 1×6

 5 2 0 0 0 4

The provided helper function plots these two scans and the features extracted with labels. s2 is
transformed to be in the same frame based on the initial guess for relative pose.

exampleHelperShowLineFeaturesInScan(s1, s2, debugInfo, initGuess);

 matchScansLine

3-177

Use the estimated relative pose from matchScansLine to transform s2. Then, plot both scans to
show that the relative pose difference is accurate and the scans overlay to show the same
environment.

s2t = transformScan(s2,relPose);
clf
plot(s1)
hold on
plot(s2t)
hold off

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScanobject.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

initialRelPose — Initial guess of relative pose
[x y theta]

Initial guess of the current pose relative to the reference laser scan frame, specified an [x y
theta] vector. [x y] is the translation in meters and theta is the rotation in radians.

3 Functions

3-178

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "LineMergeThreshold",[0.10 0.2]

SmoothnessThreshold — Threshold to detect line break points in scan
0.1 (default) | scalar

Threshold to detect line break points in scan, specified as a scalar. Smoothness is defined by calling
diff(diff(scanData)) and assumes equally spaced scan angles. Scan points corresponding to
smoothness values higher than this threshold are considered break points. For lidar scan data with a
higher noise level, increase this threshold.

MinPointsPerLine — Minimum number of scan points in each line feature
10 (default) | positive integer greater than 3

Minimum number of scan points in each line feature, specified as a positive integer greater than 3.

A line feature cannot be identified from a set of scan points if the number of points in that set is
below this threshold. When the lidar scan data is noisy, setting this property too small may result in
low-quality line features being identified and skew the matching result. On the other hand, some key
line features may be missed if this number is set too large.

LineMergeThreshold — Threshold on line parameters to merge line features
[0.05 0.1] (default) | two-element vector [rho alpha]

Threshold on line parameters to merge line features, specified as a two-element vector [rho
alpha]. A line is defined by two parameters:

• rho –– Distance from the origin to the line along a vector perpendicular to the line, specified in
meters.

• alpha –– Angle between the x-axis and the rho vector, specified in radians.

If the difference between these parameters for two line features is below the given threshold, the line
features are merged.

MinCornerPromenance — Lower bound on prominence value to detect a corner
0.05 (default) | positive scalar

Lower bound on prominence value to detect a corner, specified as a positive scalar.

Prominence measures how much a local extrema stands out in the lidar data. Only values higher than
this lower bound are considered a corner. Corners help identify line features, but are not part of the
feature itself. For noisy lidar scan data, increase this lower bound.

CompatibilityScale — Scale used to adjust the compatibility thresholds for feature
association
0.0005 (default) | positive scalar

Scale used to adjust the compatibility thresholds for feature association, specified as a positive scalar.
A lower scale means tighter compatibility threshold for associating features. If no features are found

 matchScansLine

3-179

in lidar data with obvious line features, increase this value. For invalid feature matches, reduce this
value.

Output Arguments
relpose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching information
structure

Scan matching information, returned as a structure with the following fields:

• Covariance –– 3-by-3 matrix representing the covariance of the relative pose estimation. The
matScansLine function does not provide covariance between the (x,y) and the theta
components of the relative pose. Therefore, the matrix follows the pattern: [Cxx, Cxy 0; Cyx
Cyy 0; 0 0 Ctheta].

• ExitFlag –– Scalar value indicating the exit condition of the solver:

• 0 –– No error.
• 1 –– Insufficient number of line features (< 2) are found in one or both of the scans. Consider

using different scans with more line features.
• 2 –– Insufficient number of line feature matches are identified. This may indicate the

initialRelPose is invalid or scans are too far apart.

debugInfo — Debugging information for line-based scan matching result
structure

Debugging information for line-based scan matching result, returned as a structure with the following
fields:

• ReferenceFeatures –– Line features extracted from the reference scan as an n-by-2 matrix.
Each line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha)
+ y∙sin(alpha).

• ReferenceScanMask –– Mask indicating which points in the reference scan are used for each
line feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and
contains zeros and ones for each point in refScan.

• CurrentFeatures –– Line features extracted from the current scan as an n-by-2 matrix. Each
line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha) +
y∙sin(alpha).

• CurrentScanMask –– Mask indicating which points in the current scan are used for each line
feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and contains
zeros and ones for each point in refScan.

• MatchHypothesis –– Best line feature matching hypothesis as an n element vector, where n is
the number of line features in CurrentFeatures. Each element represents the corresponding
feature in ReferenceFeaturesand gives the index of the matched feature in
ReferenceFeatures is an index match the

3 Functions

3-180

• MatchValue –– Scalar value indicating a score for each MatchHypothesis. A lower value is
considered a better match. If two elements of MatchHypothesis have the same index, the
feature with a lower score is used.

Version History
Introduced in R2020b

References
[1] Neira, J., and J.d. Tardos. “Data Association in Stochastic Mapping Using the Joint Compatibility

Test.” IEEE Transactions on Robotics and Automation 17, no. 6 (2001): 890–97. https://
doi.org/10.1109/70.976019.

[2] Shen, Xiaotong, Emilio Frazzoli, Daniela Rus, and Marcelo H. Ang. “Fast Joint Compatibility
Branch and Bound for Feature Cloud Matching.” 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016. https://doi.org/10.1109/iros.2016.7759281.

See Also
matchScans | matchScansGrid

 matchScansLine

3-181

bboxLidarToCamera
Estimate 2-D bounding box in camera frame using 3-D bounding box in lidar frame

Syntax
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform)
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform,L)
[bboxesCamera,boxesUsed] = bboxLidarToCamera(___)
[___] = bboxLidarToCamera(___ ,'ProjectedCuboid',true)

Description
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform) estimates 2-D
bounding boxes in the camera frame from 3-D bounding boxes in the lidar frame bboxesLidar. The
function uses the camera intrinsic parameters intrinsics and a lidar to camera transformation
matrix tform.

bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform,L) further refines
the 2-D bounding boxes to the edges of the object inside it using L. L is the corresponding labeled 2-D
image of the 2-D bounding boxes, where the objects are labeled distinctively.

[bboxesCamera,boxesUsed] = bboxLidarToCamera(___) indicates for which of the specified
3-D bounding boxes the function detects a corresponding 2-D bounding box in the camera frame.

[___] = bboxLidarToCamera(___ ,'ProjectedCuboid',true) returns 3-D projected cuboids
instead of 2-D bounding boxes.

Examples

Transfer Bounding Box from Point Cloud to Image

Load ground truth data from a MAT file into the workspace. Extract the image, point cloud, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the lidar to camera transformation matrix from the ground truth data.

tform = gt.camToLidar.invert;

Extract the 3-D bounding box information.

bboxLidar = gt.cuboid1;

Estimate the 2-D bounding box on the image.

bboxesCamera = bboxLidarToCamera(bboxLidar,intrinsics,tform);

3 Functions

3-182

Display the 3-D bounding box overlaid on the point cloud.

pcshow(pc.Location,pc.Location(:,1))
showShape('cuboid',bboxLidar)

Display the 2-D bounding box overlaid on the image.

J = undistortImage(im,intrinsics);
annotatedImage = insertObjectAnnotation(J,'Rectangle',bboxesCamera,'Vehicle');
imshow(annotatedImage)

 bboxLidarToCamera

3-183

Project 3-D Bounding Box from Point Cloud to Image

Load ground truth data from a MAT file into the workspace. Extract the image, point cloud, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the lidar to camera transformation matrix from the ground truth data.

tform = gt.camToLidar.invert;

Extract the 3-D bounding box information.

bboxLidar = gt.cuboid2;

Estimate the projected 3-D bounding box on the image.

3 Functions

3-184

bboxesCamera = bboxLidarToCamera(bboxLidar,intrinsics,tform,...
 'ProjectedCuboid',true);

Display the 3-D bounding box overlaid on the point cloud.

figure
pcshow(pc.Location,pc.Location(:,1))
showShape('cuboid',bboxLidar)

Display the 3-D projected bounding box overlaid on the image.

J = undistortImage(im,intrinsics);
h = imshow(J);
pcH = vision.roi.ProjectedCuboid;
pcH.Parent = h.Parent;
pcH.Position = bboxesCamera;

 bboxLidarToCamera

3-185

Input Arguments
bboxesLidar — 3-D bounding boxes in lidar frame
cuboidModel object | N-by-9 matrix of real values

3-D bounding boxes in the lidar frame, specified as a cuboidModel object or an N-by-9 matrix of real
values. N is the number of 3-D bounding boxes. Each row of the matrix has the form [xctr yctr zctr xlen
ylen zlen xrot yrot zrot].

• xctr, yctr, and zctr — These values specify the x-, y-, and z-axis coordinates, respectively, of the
center of the cuboid bounding box.

• xlen, ylen, and zlen — These values specify the length of the cuboid along the x-, y-, and z-axis,
respectively, before it is rotated.

• xrot, yrot, and zrot — These values specify the rotation angles of the cuboid around the x-, y-, and z-
axis, respectively. These angles are clockwise-positive when you look in the forward direction of
their corresponding axes.

This figure shows how these values determine the position of a cuboid.

3 Functions

3-186

Note The function assumes that the point cloud data that corresponds to the 3-D bounding boxes and
the image data are time synchronized.

Data Types: single | double

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Camera to lidar rigid transformation
rigidtform3d object

Camera to lidar rigid transformation, specified as a rigidtform3d object.

L — Labeled 2-D image
matrix of real values

Labeled 2-D image, specified as a matrix of real values. The matrix size is the same as the
ImageSize property of intrinsics.

Note Labeled images are assumed to be undistorted.

 bboxLidarToCamera

3-187

Data Types: single | double | int8 | int16 | uint8 | uint16

Output Arguments
bboxesCamera — 2-D bounding boxes in camera frame
M-by-4 matrix of real values | M-by-8 matrix of real values

2-D bounding boxes in the camera frame, returned as an M-by-4 matrix of real values. M is the
number of detected bounding boxes. Each row of the matrix contains the location and size of a
rectangular bounding box in the form [x y width height]. The x and y elements specify the x and y
coordinates, respectively, for the upper-left corner of the rectangle. The width and height elements
specify the size of the rectangle.

If 'ProjectedCuboid' is set to true, the 2-D bounding boxes are returned as an M-by-8 matrix of
real values. The bounding boxes have a cuboid shape and enclose the object. Each row of the matrix
contains the size and location of the cuboid bounding box in the form [frontFace backFace]. Both the
faces are represented as 2-D bounding boxes.
Data Types: single | double

boxesUsed — Bounding box detection flag
N-element row vector of logicals

Bounding box detection flag, returned as an N-element row vector of logicals. 2 is the number of
input 3-D bounding boxes. If the function detects a corresponding 2-D bounding box in the camera
frame, then it returns a value of true for that input 3-D bounding box. If the function does not detect
a corresponding 2-D bounding box, then it returns a value of false.
Data Types: logical

Version History
Introduced in R2021a

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

See Also
Functions
bboxCameraToLidar | projectLidarPointsOnImage | fuseCameraToLidar

3 Functions

3-188

segmentGroundSMRF
Segment ground from lidar data using a SMRF algorithm

Syntax
groundPtsIdx = segmentGroundSMRF(ptCloud)
groundPtsIdx = segmentGroundSMRF(ptCloud,gridResolution)
[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(___)
[___] = segmentGroundSMRF(___ ,Name=Value)

Description
groundPtsIdx = segmentGroundSMRF(ptCloud) segments the input point cloud ptCloud into
ground and nonground points using a simple morphological filter (SMRF) algorithm. For more
information on the SMRF algorithm, see “Simple Morphological Filter” on page 3-194.

groundPtsIdx = segmentGroundSMRF(ptCloud,gridResolution) additionally specifies the
dimension of the grid elements.

[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(___) returns
the ground points and nonground points as individual pointCloud objects, in addition to the ground
point indices, using any of the input argument combinations from previous syntaxes.

[___] = segmentGroundSMRF(___ ,Name=Value) specifies options using one or more name-
value arguments. For example, ElevationThreshold=0.4 sets the elevation threshold for
identifying nonground points to 0.4.

Examples

Segment Ground in Aerial Lidar Data

Segment the ground in an unorganized aerial point cloud.

Create a lasFileReader object to access the data of aerialLidarData2.las.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData2.las");
lasReader = lasFileReader(fileName);

Read the point cloud data from the LAS file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Segment the ground data from the point cloud.

[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(ptCloud);

Visualize the ground and nonground points.

figure
pcshowpair(groundPtCloud,nonGroundPtCloud)

 segmentGroundSMRF

3-189

Segment and Remove Ground from Point Cloud Data

Segment and remove the ground from an organized point cloud.

Load the point cloud data into the workspace. This point cloud was captured in a highway scenario.

ld = load("drivingLidarPoints.mat");

Display the input point cloud.

pcshow(ld.ptCloud)
xlim([-40 40])
ylim([-50 50])

3 Functions

3-190

Segment the ground data from the point cloud.

[~,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(...
 ld.ptCloud,MaxWindowRadius=5,ElevationThreshold=0.1,ElevationScale=0.25);

Visualize the nonground points.

figure
pcshow(nonGroundPtCloud)
xlim([-40 40])
ylim([-50 50])

 segmentGroundSMRF

3-191

Input Arguments
ptCloud — Point cloud data
pointCloud object

Point cloud data, specified as a pointCloud object.

gridResolution — Dimension of each grid element
1 (default) | positive scalar

Dimension of each grid element, specified as a positive scalar. The function samples the input point
cloud into grids along the xy-direction using the grid size to create a minimum surface map.
Decreasing the value of grid resolution may return nonground points as ground.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: segmentGroundSMRF(ptCloud,ElevationThreshold=0.4) sets the elevation
threshold for identifying nonground points to 0.4.

3 Functions

3-192

MaxWindowRadius — Maximum radius for structuring element
18 (default) | positive integer

Maximum radius for the disc-shaped structuring element in the morphological opening operation,
specified as a positive integer. You can segment large buildings as ground by specifying a smaller
radius. Increasing this value can increase the computation time of the function.

Note The default value works effectively for aerial lidar data. For better performance on terrestrial
data, set MaxWindowRadius to a smaller value, such as 8.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SlopeThreshold — Slope threshold for identifying grid elements
0.15 (default) | nonnegative scalar

Slope threshold for identifying grid elements as ground or nonground in a minimum elevation surface
map, specified as a nonnegative scalar. The function classifies a grid element as ground if its slope is
less than SlopeThreshold. Increase this value to classify steeper slopes as ground.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ElevationThreshold — Elevation threshold for identifying points
0.5 (default) | nonnegative scalar

Elevation threshold for identifying points as ground or nonground in the estimated elevation model,
specified as a nonnegative scalar. The function classifies a point as ground if the elevation difference
between the point and estimated ground surface is less than ElevationThreshold. To include more
points from bumpy ground, increase this value.

Note The default value works effectively for aerial lidar data. For best results on terrestrial data, set
ElevationThreshold to a smaller value, such as 0.1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ElevationScale — Elevation threshold scaling factor
1.25 (default) | nonnegative scalar

Elevation threshold scaling factor, specified as a nonnegative scalar. You can identify ground points
on steep slopes by increasing this value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
groundPtsIdx — Binary map of segmented point cloud
logical matrix | logical vector

Binary map of the segmented point cloud, returned as a logical matrix or a logical vector.

• For an organized point cloud of the form M-by-N-by-3, groundPtsIdx is returned as an M-by-N
logical matrix.

 segmentGroundSMRF

3-193

• For an unorganized point cloud of the form M-by-3, groundPtsIdx is returned as an M element
logical vector.

Elements of this output that correspond to ground points in the point cloud are true and nonground
points are false.

nonGroundPtCloud — Point cloud of nonground points
pointCloud object

Point cloud of nonground points, returned as a pointCloud object.

groundPtCloud — Point cloud of ground points
pointCloud object

Point cloud of ground points, returned as a pointCloud object.

Algorithms
A simple morphological filter (SMRF) algorithm [1] segments point cloud data into ground and
nonground points. The algorithm consists of three stages:

1 Create a minimum elevation surface map from the point cloud data.
2 Segment the surface map into ground and nonground grid elements.
3 Segment the original point cloud data.

Create Minimum Elevation Surface Map

1 Divide the point cloud data into grids along the xy- plane (bird's-eye view). Specify the grid size
using gridResolution.

2 Find the lowest elevation (Zmin) value for each grid element (pixel).
3 Combine all the Zmin values into a 2-D matrix (raster image) to create a minimum elevation

surface map.

Segment Surface Map

1 Apply a morphological opening operation on the minimum surface map. This applies an erosion
filter followed by a dilation filter. For more information on morphological opening, see “Types of
Morphological Operations”.

2 The shape of the structuring element and its window radius define the search neighbourhood for
the morphological opening. Use a disc-shaped structuring element, and start with a window
radius of 1 pixel. For more information, see “Structuring Elements”.

3 Calculate the slope between the minimum surface and opened surface maps at each grid
element. If the difference is greater than the elevation threshold, classify the pixel as nonground.

4 Execute steps 1 through 3 iteratively. Increase the window radius by 1 pixel in each iteration
until it reaches the maximum radius specified by MaxWindowRadius.

5 The end result of the iteration process is a binary mask in which each pixel of the point cloud is
classified as either ground or nonground.

Segment Original Point Cloud

1 Apply the binary mask to the original minimum surface map to remove nonground grids.

3 Functions

3-194

2 Fill the unfilled grids using image interpolation techniques to create an estimated elevation
model.

3 Calculate the elevation difference between each point in the original point cloud and the
corresponding point in the estimated elevation model. If the difference is greater than
ElevationThreshold, classify the pixel as nonground.

4 Multiply the slope of the elevation model at the each point by ElevationScale, and add the
result to the ElevationThreshold value to identify ground points on steep slopes.

Version History
Introduced in R2021a

References
[1] Pingel, Thomas J., Keith C. Clarke, and William A. McBride. “An Improved Simple Morphological

Filter for the Terrain Classification of Airborne LIDAR Data.” ISPRS Journal of
Photogrammetry and Remote Sensing 77 (March 2013): 21–30.https://doi.org/10.1016/
j.isprsjprs.2012.12.002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function has a real-time performance limitation due to limitations in the imopen, regionfill
functions.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
pcsegdist | segmentLidarData | segmentGroundFromLidarData

Objects
lasFileReader

 segmentGroundSMRF

3-195

https://doi.org/10.1016/j.isprsjprs.2012.12.002
https://doi.org/10.1016/j.isprsjprs.2012.12.002

transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in scan by
using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose) transforms the
laser scan specified in ranges and angles by using the specified relative pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are distances from a
sensor at specified angles. The vector must be the same length as the corresponding angles vector.

3 Functions

3-196

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the specific
angles of the specified ranges. The vector must be the same length as the corresponding ranges
vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation in meters
and theta is the rotation in radians.

Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values are distances
from a sensor at specified transAngles. The vector is the same length as the corresponding
transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are the specific
angles of the specified transRanges. The vector is the same length as the corresponding ranges
vector.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matchScans | lidarScan | matchScansGrid

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

 transformScan

3-197

pcorganize
Convert 3-D point cloud into organized point cloud

Syntax
ptCloudOut = pcorganize(ptCloudIn,params)

Description
ptCloudOut = pcorganize(ptCloudIn,params) converts a 3-D point cloud, ptCloudIn, into an
organized point cloud, ptCloutOut, using the sensor parameters, params.

Examples

Convert HDL-64E Unorganized Point Cloud into Organized Point Cloud

Load point cloud data into the workspace.

fileName = fullfile(toolboxdir("lidar"),"lidardata","lcc","HDL64", ...
 "pointCloud","0001.pcd");
ptCloudUnorg = pcread(fileName);

Specify the horizontal resolution of the lidar sensor.

horizontalResolution = 1024;

Create a lidarParameters object that represents an HDL64E sensor with the specified
horizontalResolution.

params = lidarParameters('HDL64E',horizontalResolution);

Convert the unorganized point cloud into an organized point cloud.

ptCloudOrg = pcorganize(ptCloudUnorg,params);

Display the dimensions of the input point cloud.

size(ptCloudUnorg.Location)

ans = 1×2

 37879 3

Display the size of the converted point cloud. pointCloud objects store organized point clouds as M-
by-N-by-3 arrays, whereas they store unorganized point clouds as M-by-3 matrices

size(ptCloudOrg.Location)

ans = 1×3

3 Functions

3-198

 64 1024 3

Input Arguments
ptCloudIn — Input point cloud data
pointCloud object

Input point cloud data, specified as a pointCloud object.

params — Lidar sensor parameters
lidarParameters object

Lidar sensor parameters, specified as a lidarParameters object. For more information about lidar
sensor parameters, see “Lidar Sensor Parameters”.

Output Arguments
ptCloudOut — Organized point cloud data
pointCloud object

Organized point cloud data, returned as a pointCloud object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lidarParameters | pointCloud

Topics
“Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”
“What are Organized and Unorganized Point Clouds?”

 pcorganize

3-199

pc2dem
Create digital elevation model (DEM) of point cloud data

Syntax
elevModel = pc2dem(ptCloudIn)
elevModel = pc2dem(ptCloudIn,gridResolution)
[elevModel,xlimits,ylimits] = pc2dem(___)
[___] = pc2dem(___ ,Name,Value)

Description
elevModel = pc2dem(ptCloudIn) creates and returns a digital elevation model (DEM)
elevModel for the input point cloud. The output matrix contains generalized elevation information of
the input point cloud. For more information, see “Algorithms” on page 3-206.

elevModel = pc2dem(ptCloudIn,gridResolution) additionally specifies the dimensions of the
grid element.

[elevModel,xlimits,ylimits] = pc2dem(___) additionally returns the x- and y-limits of the
DEM, using any combination of input arguments from previous syntaxes.

[___] = pc2dem(___ ,Name,Value) specifies options using one or more name-value arguments.
For example, 'CornerFillMethod','min' specifies for the function to compute the generalized
elevation values for the grid corners in the DEM as the minimum elevation in the default search
radius of each grid corner.

Examples

Create Digital Terrain Model from Point Cloud

Create a lasFileReader object to read point cloud data stored in aerialLidarData.laz file.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");
lasReader = lasFileReader(fileName);

Read point cloud data from the file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud data.

figure
pcshow(ptCloud.Location)
title("Point Cloud")

3 Functions

3-200

Segment the ground points from the point cloud data.

groundPtsIdx = segmentGroundSMRF(ptCloud);

Extract the ground points.

ptCloudWithGround = select(ptCloud,groundPtsIdx);

Visualize the ground points.

figure
pcshow(ptCloudWithGround.Location)
title("Ground Points")

 pc2dem

3-201

Create a digital terrain model (DTM) from the segmented ground points.

terrainModel = pc2dem(ptCloudWithGround);

Visualize the DTM.

figure
imagesc(terrainModel)
colormap(gray)
title("Digital Terrain Model")

3 Functions

3-202

Create Digital Surface Model from Point Cloud

Create a lasFileReader object to read aerial point cloud data from "aerialLidarData.laz".

fileName = fullfile(toolboxdir("lidar"),"lidardata","las", ...
 "aerialLidarData.laz");
lasReader = lasFileReader(fileName);

Read the point cloud data of the first return of the lidar sensor from the LAS file using the
readPointCloud function.

ptCloud = readPointCloud(lasReader,"LaserReturn",1);

Create a digital surface model (DSM) of the point cloud with a grid element resolution of 1.1 meters.

gridRes = 1.1;
surfaceModel = pc2dem(ptCloud,gridRes,"CornerFillMethod","max");

Define the location of the illumination source.

azimuthAng = 135;
zenithAng = 45;

Compute the directional gradients of the DSM using the imgradientxy function.

[gx,gy] = imgradientxy(surfaceModel,"sobel");

 pc2dem

3-203

Normalize the gradients using the grid element resolution.

gx = gx/(8*gridRes);
gy = gy/(8*gridRes);

Compute the slope and aspect of the DSM.

slopeAngle = atand(sqrt(gx.^2 + gy.^2));
aspectAngle = atan2d(gy,-gx);
aspectAngle(aspectAngle < 0) = aspectAngle(aspectAngle < 0) + 360;

Calculate the hillshade using the algorithm from Esri®. A hillshade is a 3-D grayscale representation
of a surface, with the relative position of the illumination source taken into account when shading the
image.

h = 255.0*((cosd(zenithAng).*cosd(slopeAngle)) ...
 + (sind(zenithAng).*sind(slopeAngle).*cosd(azimuthAng - aspectAngle)));
h(h < 0) = 0;

Visualize the hillshade of the DSM.

figure
imagesc(h)
colormap(gray)

3 Functions

3-204

Input Arguments
ptCloudIn — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object.

gridResolution — Resolution of grid element
[1 1] (default) | two-element vector | scalar

Resolution of the grid element along the xy-axes, specified as a two-element vector of the form [x y],
or as a scalar for square elements. Values for this argument must be positive real numbers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CornerFillMethod','min' selects the type of method to compute the generalized
elevation values for each grid corner in the DEM.

CornerFillMethod — Method for grid corner compute generalized elevation value
calculation
'mean' (default) | character vector | string scalar

Method for grid corner the generalized elevation value calculation, specified as a character vector or
a string scalar. The list of supported methods and how they must be specified is as follows:

• 'min' — Minimum elevation of all the points in the search radius
• 'max' — Maximum elevation of all the points in the search radius
• 'mean' — Mean elevation of all the points in the search radius
• 'idw' — Inverse distance weighted (IDW) mean elevation of all the points in the search radius

Data Types: char | string

SearchRadius — Radius of search region around each grid corner
sqrt(2)*gridResolution(1) (default) | positive scalar

Radius of search region around each grid corner, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterSize — Filter size for IDW interpolation
1 (default) | positive odd integer

Filter size for IDW interpolation to fill unfilled grid corners, specified as a positive odd integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 pc2dem

3-205

Output Arguments
elevModel — Digital elevation model
M-by-N matrix of real values

Digital elevation model, returned as an M-by-N matrix of real values. The values of M and N are
computed based on point cloud limits along the xy-axes and the gridResolution.

xlimits — x-axis limits of elevation model
two-element real-valued vector

x-axis limits of the elevation model, returned as a two-element real-valued vector.

ylimits — y-axis limits of elevation model
two-element real-valued vector

y-axis limits of the elevation model, returned as a two-element real-valued vector.

Algorithms
The function uses a local binning algorithm to create a digital elevation model (DEM) of the point
cloud data. The algorithm assumes that the elevation of points is along the z-axis.

Local Binning Algorithm:

• Divide the point cloud into a grid along the xy-dimensions (bird's eye view). Specify the grid
dimensions using the gridResolution argument.

• Utilize the elevation information of all points within a circular region around each grid corner to
compute generalized grid values. You can specify the search radius and computation method using
the 'SearchRadius' and 'CornerFillMethod' name-value arguments, respectively.

• If there are no points within the circular region, the algorithm does not compute a value and those
grid corners remain unfilled. The function represents them as NaN. The algorithm uses inverse
distance weighted (IDW) interpolation to fill the unfilled grid corners. To specify the filter size for
the IDW interpolation method, use the 'FilterSize' name-value argument.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pointCloud | velodyneFileReader | lasFileReader | segmentGroundSMRF | pcread

3 Functions

3-206

trainPointPillarsObjectDetector
Train PointPillars object detector

Syntax
detector = trainPointPillarsObjectDetector(trainingData,detector,options)
[detector,info] = trainPointPillarsObjectDetector(trainingData,detector,
options)
___ = trainPointPillarsObjectDetector(___ ,Name=Value)

detector = trainPointPillarsObjectDetector(trainingData,checkpoint,options)

Description
Train a Detector

detector = trainPointPillarsObjectDetector(trainingData,detector,options)
trains a PointPillars object detector using deep learning and the specified training options for the
detection network.

[detector,info] = trainPointPillarsObjectDetector(trainingData,detector,
options) returns information on the training progress of the object detector, such as the training
accuracy for each iteration.

___ = trainPointPillarsObjectDetector(___ ,Name=Value) uses additional options
specified by one or more name-value arguments and any of the previous inputs.

Resume Training a Detector

detector = trainPointPillarsObjectDetector(trainingData,checkpoint,options)
resumes training from the saved detector checkpoint.

You can use this syntax to:

• Add more training data and continue the training.
• Improve training accuracy by increasing the maximum number of iterations.

Input Arguments
trainingData — Input training data
valid datastore object | table

Training data, specified as a valid datastore object or table.

• If you use a datastore object, your data must be set up such that using the read function on the
datastore object returns a cell array or table with three columns. Each row corresponds to a point
cloud, and the columns must follow this format.

• First column — Organized or unorganized point cloud data, specified as a pointCloud object.

 trainPointPillarsObjectDetector

3-207

• Second column — Bounding boxes, specified as a cell array containing an M-by-9 matrix. Each
row of the matrix is of the form [x y z length width height roll pitch yaw], representing the
location and dimension of a bounding box. M is the number of bounding boxes.

• Third column — Labels, specified as a cell array containing an M-by-1 categorical vector with
object class names. All categorical data returned by the datastore must use the same pool of
categories.

You can use the combine function to combine two or more datastores. For more information on
creating datastore objects, see the datastore function.

• If you use a table, the table must have two or more columns. The first column must contain point
cloud file names. The point cloud files can be in any format supported by pcread function. Each of
the remaining columns represent a single object class such as Car, or Truck containing cell
vectors. Each cell contains an M-by-9 matrix, M is the number of bounding boxes. The columns of
the each matrix are of the form [x y z length width height roll pitch yaw], specifying the location
and dimensions of the bounding box in the corresponding point cloud.

You can generate the input training data from labeled ground truth samples by using the
lidarObjectDetectorTrainingData function.

detector — PointPillars object detector
pointPillarsObjectDetector object

PointPillars object detector, specified as a pointPillarsObjectDetector object.

• You can train an untrained object detector using the training options.
• You can continue training a pretrained detector with additional training data, or perform more

training iterations to improve detector accuracy.

options — Training options
TrainingOptionsSGDM object | TrainingOptionsRMSProp object | TrainingOptionsADAM
object

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function. To specify the solver
name and other options for network training, use the trainingOptions function.

Note The trainPointPillarsObjectDetector function supports these training options.

Name-Value Arguments Supported Options
ExecutionEnvironment • "auto", "gpu", "cpu"

• For "multi-gpu", "parallel" set the
DispatchInBackground argument to
false.

ResetInputNormalization false
BatchNormalizationStatistics "moving"
OutputNetwork "last-iteration"

checkpoint — Saved detector checkpoint
pointPillarsObjectDetector object

3 Functions

3-208

Saved detector checkpoint, specified as a pointPillarsObjectDetector object. To periodically
save a detector checkpoint during training, specify CheckpointPath. To control how frequently
check points are saved see the CheckPointFrequency and CheckPointFrequencyUnit training
options.

To load a checkpoint for a previously trained detector, first load the corresponding MAT file from the
checkpoint path. Then extract the object detector from the loaded data. For example, if the
CheckpointPath property of your options object is '/checkpath', you can load a checkpoint
MAT file by using this code.

data = load("/checkpath/pointpillars_checkpoint__216__2018_11_16__13_34_30.mat");
checkpoint = data.detector;

The name of the MAT file includes the iteration number and timestamp of when the detector
checkpoint was saved. The MAT file saves the detector in the detector variable. Use the
trainPointPillarsObjectDetector function to train the detector.

pointPillarsDetector = trainPointPillarsObjectDetector(trainingData,checkpoint,options);

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
trainPointPillarsObjectDetector(data,detector,ExperimentManager=expMonitorObj
) specifies the ExperimentManger value by using an experiments.Monitor object,
expMonitorObj.

ExperimentManager — Detector training experiment monitoring
'none' (default) | experiments.Monitor object

Detector training experiment monitoring, specified as an experiments.Monitor object for use with
the Experiment Manager app. You can use this object to track the progress of training, update
information fields in the training results table, record values of the metrics used by the training, and
to produce training plots. For an example using this app, see “Train Object Detectors in Experiment
Manager”.

Information monitored during training:

• Training loss at each iteration.
• Learning rate at each iteration.

Validation information when the training options input contains validation data:

• Validation loss at each iteration.

Output Arguments
detector — Trained PointPillars object detector
pointPillarsObjectDetector object

Trained PointPillars object detector, returned as pointPillarsObjectDetector object.

 trainPointPillarsObjectDetector

3-209

info — Training progress information
structure array

Training progress information, returned as a structure array with these fields. Each field corresponds
to a stage of training.

• TrainingLoss — Training loss at each iteration. The training loss is the mean squared error
(MSE), calculated as the sum of the localization error, confidence loss, and classification loss.

• ValidationLoss — Validation loss at each iteration.

Each field is a numeric vector with one element per training iteration. If the function does not
calculate a value at a specific iteration, it returns a value of NaN for that iteration. The structure
contains ValidationLoss only when options specifies validation data.

Version History
Introduced in R2021b

R2022b: Support for Experiment Manager App

You can now specify the ExperimentManager value by using an experiments.Monitor object as a
name-value argument to the function. You can use the experiments.Monitor object with the
Experiment Manager app.

For more information on using this app, see “Train Object Detectors in Experiment Manager”.

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
trainingOptions | trainRCNNObjectDetector | fileDatastore | combine |
lidarObjectDetectorTrainingData

Objects
pointPillarsObjectDetector | yolov2ObjectDetector

Topics
“Lidar 3-D Object Detection Using PointPillars Deep Learning”
“Code Generation For Lidar Object Detection Using PointPillars Deep Learning”
“Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
“Getting Started with PointPillars”
“Getting Started with Point Clouds Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)

3 Functions

3-210

pointnetplusLayers
Create PointNet++ segmentation network

Syntax
lgraph = pointnetplusLayers(numPoints,pointsDim,numClasses)
lgraph = pointnetplusLayers(___ ,Name=Value)

Description
PointNet++ is a neural network that predicts point-wise labels for an unorganized lidar point cloud.
The network partitions the input points into a set of clusters and then extracts the features using a
multi-layer perceptron (MLP) network. To use this network for semantic segmentation, train it using
the trainNetwork function.

lgraph = pointnetplusLayers(numPoints,pointsDim,numClasses) creates a PointNet++
segmentation network and returns it as lgraph, a layerGraph object.

lgraph = pointnetplusLayers(___ ,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the preceding syntax. For example,
pointnetplusLayers(numPoints,pointsDim,numClasses,ClusterSize=32) creates a
PointNet++ network with 32 points in each cluster.

Examples

Create and Analyze Custom PointNet++ Network

Define the input parameters for a custom PointNet++ network.

numPoints = 10000;
pointsDim = 3;
numClasses = 8;

Create the custom PointNet++ network.

lgraph = pointnetplusLayers(numPoints,pointsDim,numClasses, ...
 NormalizationLayer="instance", ...
 NumSetAbstractionModules=3, ...
 NumClusters=2048, ...
 ClusterRadius=0.1, ...
 ClusterSize=32, ...
 PointNetLayerSize=32);

Analyze the network using the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(lgraph)

You can train this network using the trainNetwork (Deep Learning Toolbox) function and use it for
different applications. To learn more about training the PointNet++ network, see the “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning” example.

 pointnetplusLayers

3-211

Input Arguments
numPoints — Number of points in input point cloud
positive integer

Number of points in the input point cloud, specified as a positive integer.

pointsDim — Dimensions of input point cloud matrix
positive integer greater than or equal to 3

Dimensions of the input point cloud data matrix, specified as a positive integer greater than or equal
to 3. The matrix must contain the xyz coordinates and any additional data such as range, mask, and
intensity.

numClasses — Number of classes
positive integer greater than 1

Number of classes the network must be configured to classify, specified as a positive integer greater
than 1.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: lgraph =
pointnetplusLayers(numPoints,pointsDim,numClasses,NumSetAbstractionModules=3)
;

NormalizationLayer — Type of normalization
"batch" (default) | "instance"

Type of normalization used in network, specified as "batch" or "instance".

• "batch" — Use a batchNormalizationLayer
• "instance" — Use an instanceNormalizationLayer

Data Types: string | char

NumSetAbstractionModules — Number of set abstraction modules
4 (default) | positive integer

Number of set abstraction modules for the encoder subnetwork, specified as a positive integer. The
decoder subnetwork contains the same number of feature propagation modules.

NumClusters — Number of clusters
1024 (default) | positive integer

Number of clusters to group the input points into, specified as a positive integer. The value of
NumClusters must be a power of two in the range [4N, numPoints], where N is the number of set
abstraction modules.

3 Functions

3-212

This value specifies the number of clusters in the first set abstraction module. For subsequent set
abstraction modules, the function automatically computes the number of clusters as K/4, where K is
the number of clusters from the previous set abstraction module.

ClusterRadius — Cluster radius of input points
0.1 (default) | positive scalar in range (0, 1]

Cluster radius of the input points, specified as a positive scalar in the range (0, 1].

This value specifies the cluster radius for the first set abstraction module. For subsequent set
abstraction modules, the function automatically computes the cluster radius as twice the value from
the previous set abstraction module.

ClusterSize — Number of points in each cluster
32 (default) | positive integer

Number of points in each cluster, specified as a positive integer. For a given cluster radius in each set
abstraction module, this value must be a power of two less than K/4(N — 2). K is the number of clusters
in the network and N is the number of set abstraction modules.

This value is constant across all set abstraction modules.

PointNetLayerSize — Size of first layer in MLP network
32 (default) | positive integer

Size of first layer in the MLP network of the set abstraction module, specified as a positive integer.
Each set abstraction module contains a mini PointNet with a shared MLP network implemented using
1-by-1 convolution. The sizes of first, second, and third layers in the shared MLP network are S, S,
2*S which correspond to the number of filters in the first, second and third convolution layers,
respectively.

This value specifies the size of first layer in the MLP network of the first set abstraction module. For
each subsequent set abstraction modules, the value of S is twice the value of S from the previous set
abstraction module.

Output Arguments
lgraph — Output PointNet++ network
layerGraph object

Output PointNet++ network, returned as a layerGraph object.

More About
PointNet++ Network

A PointNet++ network has an encoder subnetwork with set abstraction modules, followed by a
corresponding decoder subnetwork with feature propagation modules.

• The set abstraction module identifies new cluster centers using farthest point sampling and
groups the points into clusters using the ball query algorithm. The feature propagation module
interpolates the points using inverse weighted distance based on the k-nearest neighbors
algorithm.

 pointnetplusLayers

3-213

• The function creates the network with single scale grouping (SSG) architecture.
• The function uses the narrow-normal weight initialization method to initialize the weights of each

convolution layer in the network.
• The function initializes all bias terms to zero.

Version History
Introduced in R2021b

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
squeezesegv2Layers | semanticseg | pixelClassificationLayer | focalLossLayer

Topics
“Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
“Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
“Getting Started with PointNet++”
“Getting Started with Point Clouds Using Deep Learning”
“Datastores for Deep Learning” (Deep Learning Toolbox)

3 Functions

3-214

detectISSFeatures
Detect ISS feature points in point cloud

Syntax
points = detectISSFeatures(ptCloud)
[points,indices] = detectISSFeatures(ptCloud)
___ = detectISSFeatures(ptCloud,Name=Value)

Description
points = detectISSFeatures(ptCloud) detects intrinsic shape signature (ISS) feature points in
the input point cloud ptCloud. ISS is a 3-D shape representation method for 3-D object recognition.
ISS feature points are the points rich in 3-D structural variation in their neighbourhoods.

[points,indices] = detectISSFeatures(ptCloud) additionally returns the linear indices for
the detected ISS feature points.

___ = detectISSFeatures(ptCloud,Name=Value) specifies options using one or more name-
value arguments in addition to any combination of output arguments from previous syntaxes. For
example, detectISSFeatures(ptCloud,Radius=0.05) computes the ISS saliency within a 0.05
m radius around each point when identifying the feature points.

Examples

Detect ISS Feature Points in Point Cloud

Read a point cloud from a PLY file into the workspace.

ptCloud = pcread("teapot.ply");

Detect ISS feature points in the point cloud, and display the point cloud and ISS feature points.

points = detectISSFeatures(ptCloud);
figure(Name="Detected feature points")
pcshow(ptCloud)
hold on
plot3(points(:,1),points(:,2),points(:,3),"pentagram", ...
 MarkerSize=5,MarkerFaceColor=[1 0.6 0.6],Color="red")

 detectISSFeatures

3-215

Align Point Clouds Using Feature Extraction and Matching

Read a point cloud from a PCD file into the workspace.

ptCloud = pcread("highwayScene.pcd");

Transform the input point cloud by applying both rotation and translation.

eulerAngles = [0 0 30];
trans = [5 5 0];
tform = rigidtform3d(eulerAngles,trans);
ptCloudTform = pctransform(ptCloud,tform);

Detect ISS feature points in the original, fixed, and transformed, moving point clouds.

[~,indicesFixed] = detectISSFeatures(ptCloud);
[~,indicesMoving] = detectISSFeatures(ptCloudTform);

Extract FPFH features for the detected feature points in each point cloud.

ptCloudFixed = select(ptCloud,indicesFixed);
fixedFeature = extractFPFHFeatures(ptCloudFixed);
ptCloudMoving = select(ptCloudTform,indicesMoving);
movingFeature = extractFPFHFeatures(ptCloudMoving);

Match the features between the fixed and moving point clouds.

3 Functions

3-216

[matchingPairs,scores] = pcmatchfeatures(fixedFeature,movingFeature, ...
 ptCloudFixed,ptCloudMoving,Method="Exhaustive");

Estimate the transform using the matched features.

fixedPts = select(ptCloudFixed,matchingPairs(:,1));
matchingPts = select(ptCloudMoving,matchingPairs(:,2));
estimatedTform = estgeotform3d(fixedPts.Location, ...
 matchingPts.Location,"rigid");

Align the point clouds using the estimated transform.

ptCloudAligned = pctransform(ptCloudTform,invert(estimatedTform));

Visualize the aligned point clouds.

pcshowpair(ptCloud,ptCloudAligned)
title("Aligned Point Clouds")

Register and Align Point Clouds Using ICP Algorithm with ISS Feature Points

Load a MAT file that contains point cloud data into the workspace. Extract the first two point clouds
from the data.

 detectISSFeatures

3-217

inputData = load("livingRoom.mat");
movingPtCloud = inputData.livingRoomData{1};
fixedPtCloud = inputData.livingRoomData{2};

Visualize the extracted point clouds.

pcshowpair(movingPtCloud,fixedPtCloud,VerticalAxis="Y",VerticalAxisDir="Down")
title("Point Clouds Before Alignment")

Detect ISS feature points in the point clouds.

[~,indicesMoving] = detectISSFeatures(movingPtCloud);
[~,indicesFixed] = detectISSFeatures(fixedPtCloud);

Extract the feature points from each point cloud, and register the point clouds to one another.

movingISSPtCloud = select(movingPtCloud,indicesMoving);
fixedISSPtCloud = select(fixedPtCloud,indicesFixed);
tform = pcregistericp(movingISSPtCloud,fixedISSPtCloud, ...
Extrapolate=true);

Align the point clouds using the registered transform, and visualize the results.

movingPtCloudAligned = pctransform(movingPtCloud,tform);
figure
pcshowpair(movingPtCloudAligned,fixedPtCloud,VerticalAxis="Y",VerticalAxisDir="Down")
title("Aligned Point Clouds")

3 Functions

3-218

Input Arguments
ptCloud — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: detectISSFeatures(ptCloud,Radius=0.05) computes the ISS saliency within a 0.05
m radius around each point when identifying the feature points.

Radius — Neighborhood radius for computing saliency
positive scalar

Neighborhood radius for computing ISS saliency, specified as positive scalar. The ISS saliency of a
point is a measure of the richness of 3-D structural variation in its neighborhood, which determines
whether or not the point is a feature point. The function computes a scatter matrix within the
specified radius of each point to determine its ISS saliency and identify feature points. The default
value is six times the average distance from each point in the input point cloud to its nearest
neighbouring point. Units are in meters.

 detectISSFeatures

3-219

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NonMaxRadius — Neighborhood radius in which to apply non-maxima suppression
positive scalar

Neighborhood radius in which to apply the non-maxima suppression algorithm, specified as positive
scalar. The default value is four times the average distance from each point in the input point cloud to
its nearest neighbouring point. Increasing this value can reduce the number of detected feature
points. Units are in meters.

Note NonMaxRadius value must be less than or equal to the value of Radius. Otherwise, the
function reduces the value of NonMaxRadius to the value of Radius.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxGamma21 — Ratio of second eigenvalue to first eigenvalue
0.975 (default) | positive scalar in range (0, 1]

Ratio of the second eigenvalue to first eigenvalue in the scatter matrix, specified as a positive scalar
in the range (0, 1]. The function uses this ratio to define the x-, y-, z-axes of the intrinsic reference
frame. For a lower ratio value, the function excludes the points with similar 3-D features along the
first and second principal axes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxGamma32 — Ratio of third eigenvalue to second eigenvalue
0.975 (default) | positive scalar in range (0, 1]

Ratio of the third eigenvalue to second eigenvalue in the scatter matrix, specified as a positive scalar
in the range (0, 1]. The function uses this ratio to define the x-, y-, z-axes of the intrinsic reference
frame. For a lower ratio value, the function excludes the points with similar 3-D features along the
second and third principal axes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinNeighbors — Minimum neighbors required for ISS feature point
5 (default) | positive integer

Minimum number of neighbors required for an ISS feature point, specified as a positive integer.
Increasing this value can reduce the total number of feature points detected.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
points — ISS feature points
M-by-3 matrix

ISS feature points in the input point cloud, returned as an M-by-3 matrix. M is the total number of
feature points. Each row contains the [x y z] coordinates of a feature point.

indices — Indices for feature points
M-by-1 matrix

3 Functions

3-220

Linear indices for the detected ISS feature points, returned as an M-by-1 matrix.

Algorithms
Intrinsic shape signatures (ISS) are a method of 3-D shape representation. ISS feature points are rich
in 3-D structural variations in their neighbourhood. This method has applications in modeling,
visualization, and classification of 3-D point clouds.

To detect ISS feature points in a point cloud, the detectISSFeatures function follows these steps.

• Computes a point scatter matrix within the specified Radius around each point.
• Computes the eigenvalues λ1, λ2, and λ3 in decreasing order of magnitude for the scatter matrix.

These eigenvalues represent a direction in the 3-D space based on the number of point position
variations.

• Using the eigenvalues, the function defines a view-independent intrinsic reference frame with the
principal x-, y-, z-axes.

• Uses λ2/λ1, λ3/λ2 as criteria to avoid the points with similar spatial spread along the principal axes
while detecting feature points. You can specify eigenvalue ratios for λ2/λ1 and λ3/λ2 using the
MaxGamma21 and MaxGamma32 arguments, respectively.

• Computes the ISS saliency for each point using the smallest eigenvalue, λ3. ISS feature point is
the point with maximum ISS saliency within the specified radius around each point.

• You can further process these feature points to match point clouds, estimate pose transformations,
and detect 3-D objects.

Version History
Introduced in R2022a

See Also
Apps
Lidar Labeler | Lidar Viewer | Lidar Camera Calibrator

Functions
extractFPFHFeatures | extractEigenFeatures | pcmatchfeatures | detectLOAMFeatures

 detectISSFeatures

3-221

pc2scan
Convert 3-D point cloud into 2-D lidar scan

Syntax
scan = pc2scan(ptCloudIn)
scan = pc2scan(ptCloudIn,tform)
scan = pc2scan(ptCloudIn,Name=Value)

Description
scan = pc2scan(ptCloudIn) converts an input point cloud into a 2-D lidar scan and returns it as
a lidarScan object.

scan = pc2scan(ptCloudIn,tform) specifies the transformation tform of the input point cloud
into the 2-D lidar sensor coordinate system, and then converts it into a 2-D lidar scan. tform
represents the pose of the 2-D lidar sensor with respect to the point cloud origin.

scan = pc2scan(ptCloudIn,Name=Value) specifies options using one or more name-value
arguments. For example, pc2scan(ptCloudIn,ElevationAngleTolerance=5) selects points
with elevation angles in the range [-5, 5] degrees to generate the scan.

Examples

Convert Point Cloud to Lidar Scan

Create a velodyne PCAP file reader object.

veloReader = velodyneFileReader("lidarData_ConstructionRoad.pcap","HDL32E");

Read point cloud data from 0.3 seconds after the start time of the file by using the readFrame
method. Display the point cloud.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
ptCloud = readFrame(veloReader);
pcshow(ptCloud)

3 Functions

3-222

Segment the point cloud and remove ground points.

groundPtsIdx = segmentGroundFromLidarData(ptCloud);
nonGroundPtCloud= select(ptCloud,~groundPtsIdx,OutputSize="full");

Convert the point cloud into 2-D lidar scan and display the output.

scan = pc2scan(nonGroundPtCloud);
figure
plot(scan)

 pc2scan

3-223

Input Arguments
ptCloudIn — Input point cloud
pointCloud object

Input point cloud, specified as a pointCloud object.

By default, the function assumes the input point cloud is in the sensor coordinate system with the
point cloud origin at the sensor center, and the sensor capturing the point cloud has no rotations
about the coordinate axes.

You must specify the Location property of the pointCloud object in meters.

tform — Rigid transformation between lidar sensor and point cloud origin
rigidtform3d object

Rigid transformation between the 2-D lidar sensor and the point cloud origin, specified as a
rigidtform3d object. The function uses tform to convert the input point cloud into the 2-D lidar
sensor coordinate system.

Note By default, the function assumes the input point cloud is in the sensor coordinate system, and
the sensor capturing the point cloud has no rotations about the coordinate axes if you do not specify
tform.

3 Functions

3-224

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: pc2scan(ptCloudIn,ElevationAngleTolerance=5) selects points with elevation
angles in the range [-5, 5] degrees to generate the scan.

ElevationAngleTolerance — Elevation angle tolerance
1 (default) | positive scalar

Elevation angle tolerance, specified as a positive scalar. When generating the 2-D lidar scan, the
function selects only the points of the input point cloud with elevation angles in the range [-
ElevationAngleTolerance, ElevationAngleTolerance]. Lower values of
ElevationAngleTolerance can result in a more accurate output scan. Units are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScanAngleResolution — Angle between consecutive scan lines
0.5 (default) | positive scalar

Angle between the consecutive scan lines of the 2-D lidar sensor, specified as a positive scalar. Lower
values can result in a finer scan output. Units are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScanRangeLimits — Scanning range of lidar sensor
[eps 80] (default) | two-element vector

Scanning range of the 2-D lidar sensor, specified as a two-element vector of the form [min max].
Units are in meters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScanAngleLimits — Scanning angle limits of lidar sensor
[-90 90] (default) | two-element vector

Scanning angle limits of the 2-D lidar sensor, specified as a two-element vector of the form [min
max]. This vector defines the horizontal field of view of the sensor. Units are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
scan — Output 2-D lidar scan
lidarScan object

Output 2-D lidar scan, returned as a lidarScan object.

Algorithms
The function follows these steps to convert a point cloud into a 2-D lidar scan.

 pc2scan

3-225

• Converts the input point cloud to the 2-D lidar sensor coordinate system using the specified
transformation tform. If you do not specify tform, the function assumes the data is in the sensor
coordinate system.

• Projects the points on the xy-plane. For each projected point, the function computes the angle and
range. The angle is counter-clockwise positive along the x-axis, and the range is the distance from
the origin.

• Selects the points whose angle and range are within the specified ScanAngleLimits and
ScanRangeLimits, respectively.

• Selects the points whose elevation angle is within the specified ElevationAngleTolerance.
• Computes the scan line index for each point from the measured angle. The function assigns a scan

angle to each scan line, starting from the first scan line and assigning it the value of the first
element of ScanAngleLimits. The function then increments the angle in steps of the specified
ScanAngleResolution to the remaining scan lines.

• By default, each scan line index has the maximum range. For multiple scan lines with same index,
the function assigns the range value of the point closest to the origin.

• Generates the 2-D lidar scan using the scan angles and the range values.

Version History
Introduced in R2022a

R2022b: Supports rigidtform3d objects

You can now specify tform as a rigidtform3d object, which uses the premultiply convention.
Although you can still specify tform as a rigid3d object, this object is not recommended because it
uses the postmultiply convention. For more information, see “Migrate Geometric Transformations to
Premultiply Convention”.

See Also
Apps
Lidar Labeler | Lidar Viewer | Lidar Camera Calibrator

Functions
matchScansGrid | matchScans | lidarScan | transformScan | pc2dem

3 Functions

3-226

sampleLidarData
Sample 3-D bounding boxes and corresponding points from training data

Syntax
[pcds,blds] = sampleLidarData(trainingData,classNames)
[pcds,blds] = sampleLidarData(___ ,Name=Value)

Description
[pcds,blds] = sampleLidarData(trainingData,classNames) samples 3-D bounding boxes
and the corresponding points from the specified training data and returns them as datastore objects.

[pcds,blds] = sampleLidarData(___ ,Name=Value) specifies one or more name-value
arguments in addition to all input arguments from the previous syntax. For example,
sampleLidarData(trainingData,classNames,MinPoints=20) samples only boxes that have a
minimum of 20 points inside them.

Examples

Perform Ground Truth Data Augmentation on Point Cloud

Load a point cloud and its class labels into the workspace.

dataLocation = fullfile(toolboxdir("lidar"),"lidardata", ...
 "sampleWPIPointClouds","pointClouds");
load("sampleWPILabels.mat","trainLabels");

Create a datastore for training data.

pcds = fileDatastore(dataLocation,"ReadFcn",@(x) pcread(x));
blds = boxLabelDatastore(trainLabels);
trainingData = combine(pcds,blds);

Define the class names to sample from the input data. Use the sampleLidarData function to sample
the corresponding bounding boxes.

classNames = {'car'};
[pcdsSampled,bldsSampled] = sampleLidarData(trainingData,classNames,Verbose=false);
cdsSampled = combine(pcdsSampled,bldsSampled);

Read a point cloud from the training data.

pcBoxLabels = read(trainingData);
figure
pcshow(pcBoxLabels{1,1}.Location)
showShape(cuboid=pcBoxLabels{1,2},Opacity=0.1, ...
 Color="yellow",LineWidth=0.5);
title("Original Point Cloud")

 sampleLidarData

3-227

Augment the point cloud data pcBoxLabels with points sampled from the datastore cdsSampled
using the pcBboxOversample function.

totalObjects = 5;
augmentedPcBoxLabels = pcBboxOversample(pcBoxLabels,cdsSampled,classNames,totalObjects);
figure
pcshow(augmentedPcBoxLabels{1,1}.Location)
showShape(cuboid=augmentedPcBoxLabels{1,2},Opacity=0.1, ...
 Color="yellow",LineWidth=0.5);
title("Augmented Point Cloud")

3 Functions

3-228

Input Arguments
trainingData — Input point cloud data
valid datastore object | table

Input point cloud data, specified as a valid datastore object or a table.

• If you specify a datastore object, your data must be set up such that using the read function on
the datastore object returns a cell array or table with three columns. Each row corresponds to a
point cloud, and the columns must follow this format.

• First column — Organized or unorganized point cloud data, specified as a pointCloud object.
• Second column — Bounding boxes, specified as a cell array containing an M-by-9 matrix. Each

row of the matrix is of the form [x y z length width height roll pitch yaw], representing the
location and dimension of a bounding box. M is the number of bounding boxes.

• Third column — Labels, specified as a cell array containing an M-by-1 categorical vector
containing the object class names.

You can use the combine function to combine two or more datastores. For more information on
creating datastore objects, see the datastore function.

• If you specify a table, the table must have two or more columns. The first column must contain
point cloud file names. The point cloud files can be in any format supported by the pcread
function. Each of the remaining columns contains a cell array that represents a single object class,

 sampleLidarData

3-229

such as Car, or Truck. Each cell contains an M-by-9 matrix. Each row of the matrix is of the form
[x y z length width height roll pitch yaw], specifying the location and dimensions of the bounding
box in the corresponding point cloud. M is the number of bounding boxes.

classNames — Names of object classes
character vector | string scalar | vector of strings | cell array of character vectors

Name of the object classes, specified as a character vector, string scalar, vector of strings, or a cell
array of character vectors. The function samples these classes from the input training data. For
example, 'car', 'truck', or 'pedestrian'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: sampleLidarData(trainingData,classNames,MinPoints=20) samples only objects
that have a minimum of 20 points inside them.

MinPoints — Minimum points required to sample object
0 (default) | positive scalar | M-element vector

Minimum number of points required to sample an object, specified as a positive scalar or an M-
element vector. M is the number of classes. If the value is a vector, each element corresponds to the
respective class. Otherwise the function uses the same value for all the classes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WriteLocation — Folder in which to write sampled data
pwd(working folder location) (default) | character vector | string scalar

Folder in which to write the sampled data, specified as a character vector or string scalar. The folder
must exist in the location specified, and you must have write permissions. By default, the function
writes this data into the current working folder. The data consists of the sampled points and their
respective box labels.
Data Types: char | string

Verbose — Display of data writing progress
true (default) | false

Display of data writing progress, specified as a logical true or false.
Data Types: logical

Output Arguments
pcds — File locations of points sampled from training data
fileDatastore object

File locations of the points sampled from the training data, returned as a fileDatastore object.

blds — Sampled 3-D bounding boxes and labels
boxLabelDatastore object

3 Functions

3-230

Sampled 3-D bounding boxes and labels, returned as a boxLabelDatastore object.

Algorithms
Lidar object detection techniques directly predict 3-D bounding boxes around objects of interest.
Data augmentation helps you improve prediction accuracy and avoid overfitting issues while training.

You can perform ground truth data augmentation on point clouds using these steps.

1 Sample 3-D bounding boxes and the corresponding points from input training data using the
sampleLidarData function.

2 Augment a point cloud randomly with the sampled bounding boxes by using the
pcBboxOversample function. The function performs a collision test on the sampled boxes and
the ground truth boxes of the input point cloud to avoid overlap.

This technique alleviates the class imbalance problem in lidar object detection.

Version History
Introduced in R2022a

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
pcBboxOversample | transform | pointPillarsObjectDetector | pointnetplusLayers |
squeezesegv2Layers

Topics
“Data Augmentations for Lidar Object Detection Using Deep Learning”
“Lidar 3-D Object Detection Using PointPillars Deep Learning”

 sampleLidarData

3-231

pcBboxOversample
Randomly augment point cloud data using objects

Syntax
augmentedPcBoxLabels = pcBboxOversample(pcBoxLabels,sampleData,classNames,
totalObjects)

Description
augmentedPcBoxLabels = pcBboxOversample(pcBoxLabels,sampleData,classNames,
totalObjects) randomly augments the specified point cloud data pcBoxLabels using objects with
specified class names classNames from the training data datastore sampleData.

Examples

Perform Ground Truth Data Augmentation on Point Cloud

Load a point cloud and its class labels into the workspace.

dataLocation = fullfile(toolboxdir("lidar"),"lidardata", ...
 "sampleWPIPointClouds","pointClouds");
load("sampleWPILabels.mat","trainLabels");

Create a datastore for training data.

pcds = fileDatastore(dataLocation,"ReadFcn",@(x) pcread(x));
blds = boxLabelDatastore(trainLabels);
trainingData = combine(pcds,blds);

Define the class names to sample from the input data. Use the sampleLidarData function to sample
the corresponding bounding boxes.

classNames = {'car'};
[pcdsSampled,bldsSampled] = sampleLidarData(trainingData,classNames,Verbose=false);
cdsSampled = combine(pcdsSampled,bldsSampled);

Read a point cloud from the training data.

pcBoxLabels = read(trainingData);
figure
pcshow(pcBoxLabels{1,1}.Location)
showShape(cuboid=pcBoxLabels{1,2},Opacity=0.1, ...
 Color="yellow",LineWidth=0.5);
title("Original Point Cloud")

3 Functions

3-232

Augment the point cloud data pcBoxLabels with points sampled from the datastore cdsSampled
using the pcBboxOversample function.

totalObjects = 5;
augmentedPcBoxLabels = pcBboxOversample(pcBoxLabels,cdsSampled,classNames,totalObjects);
figure
pcshow(augmentedPcBoxLabels{1,1}.Location)
showShape(cuboid=augmentedPcBoxLabels{1,2},Opacity=0.1, ...
 Color="yellow",LineWidth=0.5);
title("Augmented Point Cloud")

 pcBboxOversample

3-233

Input Arguments
pcBoxLabels — Input point cloud data
1-by-3 cell array

Input point cloud data, specified as a 1-by-3 cell array. The cells contain the point cloud, the bounding
box annotations and the bounding box categories, respectively.

sampleData — Training Data
valid datastore object | table

Training data, specified as a valid datastore object or table.

• If you specify a datastore object, your data must be set up such that using the read function on
the datastore object returns a cell array or table with three columns. Each row corresponds to an
object, and the columns must follow this format.

• First column — Sampled points, specified as a cell array.
• Second column — Bounding box, specified as a cell array containing a 9-element vector of the

form [x y z length width height roll pitch yaw], representing the location and dimensions of the
bounding box for the sampled points.

• Third column — Label, specified as a cell array containing a categorical vector with the object
class name.

3 Functions

3-234

You can use the combine function to combine two or more datastores. For more information on
creating datastore objects, see the datastore function.

• If you use a table, the table must have two or more columns. The first column must contain point
cloud file names with the file location. The point cloud files can be in any format supported by
pcread function. Each of the remaining columns represent a single object class such as Car, or
Truck containing a 9-element vector of the form [x y z length width height roll pitch yaw],
specifying the location and dimensions of the bounding box corresponding to the sampled points
in the point cloud.

classNames — Names of object classes
M-element vector of strings | M-element categorical vector | M-element cell array of character
vectors

Names of object classes, specified as a M-element vector of strings, M-element categorical vector, M-
element cell array of character vectors. M is the number of object classes specified.

totalObjects — Total objects in each class
scalar | M-element vector

Total number of objects in each class of the output point cloud, specified as a positive scalar or M-
element vector. When this value is a scalar, the function uses the same value for all classes. When you
specify an M-element vector, each element specifies the number of objects of the corresponding class
in the classNames argument.

Output Arguments
augmentedPcBoxLabels — Augmented point cloud data
1-by-3 cell array

Augmented point cloud data, returned as a 1-by-3 cell array. The cells contain the augmented point
cloud, the bounding box annotations, and the box categories, respectively.

Algorithms
Lidar object detection techniques directly predict 3-D bounding boxes around objects of interest.
Data augmentation helps you improve prediction accuracy and avoid overfitting issues while training.

You can perform ground truth data augmentation on point clouds using these steps.

1 Sample 3-D bounding boxes and the corresponding points from input training data using the
sampleLidarData function.

2 Augment a point cloud randomly with the sampled bounding boxes by using the
pcBboxOversample function. The function performs a collision test on the sampled boxes and
the ground truth boxes of the input point cloud to avoid overlap.

This technique alleviates the class imbalance problem in lidar object detection.

Version History
Introduced in R2022a

 pcBboxOversample

3-235

See Also
Apps
Lidar Labeler | Lidar Viewer

Functions
sampleLidarData | transform | pointPillarsObjectDetector | pointnetplusLayers |
squeezesegv2Layers

Topics
“Data Augmentations for Lidar Object Detection Using Deep Learning”
“Lidar 3-D Object Detection Using PointPillars Deep Learning”

3 Functions

3-236

lidarObjectDetectorTrainingData
Create training data for lidar object detection

Syntax
trainingData = lidarObjectDetectorTrainingData(gTruth)
[ptds,blds] = lidarObjectDetectorTrainingData(gTruth)
___ = lidarObjectDetectorTrainingData(gTruth,Name=Value)

Description
trainingData = lidarObjectDetectorTrainingData(gTruth) creates a table of training
data from the specified ground truth label data. Use this training data to train the deep learning
networks in Lidar Toolbox for lidar object detection.

[ptds,blds] = lidarObjectDetectorTrainingData(gTruth) creates a file datastore and a
box label datastore training data from the specified ground truth label data. To create a datastore for
training the network, combine the file and box label datastores by using combine(ptds, blds). Use
the combined datastore to train the deep learning networks in Lidar Toolbox for lidar object
detection.

___ = lidarObjectDetectorTrainingData(gTruth,Name=Value) uses additional options
specified by one or more name-value arguments.

Examples

Generate Training Data for Point Cloud Object Detection

This example shows how to generate training data to train a deep learning network for point cloud
object detection.

Step 1: Create Ground Truth from Data Source

Specify the name of the file containing the point cloud data. The input file is a Velodyne® packet
capture (PCAP) file.

sourceName = fullfile(toolboxdir("vision"),"visiondata",...
 "lidarData_ConstructionRoad.pcap");

Specify the parameters for loading the point cloud sequence from the data source.

sourceParams = struct();
sourceParams.DeviceModel = "HDL32E";
sourceParams.CalibrationFile = fullfile(matlabroot,"toolbox","shared",...
 "pointclouds","utilities","velodyneFileReaderConfiguration",...
 "HDL32E.xml");

Load the point cloud data from the specified source file by using the
vision.labeler.loading.VelodyneLidarSource function.

 lidarObjectDetectorTrainingData

3-237

dataSource = vision.labeler.loading.VelodyneLidarSource();
dataSource.loadSource(sourceName,sourceParams);

Define class labels to specify the names of the objects in the input point cloud.

ldc = labelDefinitionCreatorLidar();
addLabel(ldc,"Car","Cuboid");
labelDefs = ldc.create();

Define bounding boxes to specify the location of each object in the point cloud sequence, at each
timestamp. Store information about bounding boxes and timestamp to a table.

numPCFrames = numel(dataSource.Timestamp{1});
carData = cell(numPCFrames,1);
carData{1} = [1.0223 13.2884 1.1456 8.3114 3.8382 3.1460 0 0 0];
lidarData = timetable(dataSource.Timestamp{1},carData,...
 VariableNames="Car");

Create ground truth object.

gTruth = groundTruthLidar(dataSource,labelDefs,lidarData);

Step 2: Generate Training Data

Create point cloud and box label datastores from the labeled ground truth by using the
lidarObjectDetectorTrainingData function.

[pcds,bxds] = lidarObjectDetectorTrainingData(gTruth);

Write point cloud extracted for training to folder:
 C:\TEMP\Bdoc23a_2213998_3568\ib570499\29\tp0b1afb9f\lidar-ex45787688

Writing 1 point clouds extracted from dataSource1...Completed.

Generate training data by combining the point cloud and box label datastores.

trainingData = combine(pcds,bxds);

Step 3: Configure Object Detector

Specify the class names, anchor boxes, point cloud range, and the voxel size. Configure the
PointPillars object detector for training and inference.

classNames = "Car";
anchorBoxes = {[1.9,4.5,1.7,-1.78,0; 1.9,4.5,1.7,-1.78,1.57]};
pcRange = [0,69.12,-39.68,39.68,-5,5];
voxSize = [0.16,0.16];
detector = pointPillarsObjectDetector(pcRange,classNames,anchorBoxes,...
 VoxelSize=voxSize);

Step 4: Train Object Detector

Specify training options.

options = trainingOptions("adam",...
 Plots="none",...
 MaxEpochs=2,...
 MiniBatchSize=1,...
 GradientDecayFactor=0.9,...

3 Functions

3-238

 SquaredGradientDecayFactor=0.999,...
 InitialLearnRate=0.0002,...
 LearnRateDropPeriod=15,...
 LearnRateDropFactor=0.8,...
 ExecutionEnvironment="cpu",...
 DispatchInBackground=false,...
 BatchNormalizationStatistics="moving",...
 ResetInputNormalization=false);

Train the PointPillars object detector to detect classes specified in the input training data. You can
use the trained detector to detect objects in a test point cloud by using the detect function.

[detector,info] = trainPointPillarsObjectDetector(trainingData,detector,options);

Processing data in minibatchqueue....

Data processing complete.

Training a PointPillars Object Detector for the following object classes:

* Car

 Epoch Iteration TimeElapsed LearnRate TrainingLoss
 _____ _________ ___________ _________ ____________

Detector training complete.

Input Arguments
gTruth — Lidar ground truth label data
groundTruthLidar object

Lidar ground truth label data, specified as a groundTruthLidar object or an array of
groundTruthLidar objects. To create ground truth objects from existing ground truth data, use the
groundTruthLidar object. You can also use the Lidar Labeler app to label a point cloud and
generate the ground truth data.

Note The lidarObjectDetectorTrainingData function imports only the ground truth data with
cuboid ROI labels. Ground truth data with other label types are ignored.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 lidarObjectDetectorTrainingData

3-239

Example: trainingData = lidarObjectDetectorTrainingData(gTruth,
PointCloudFormat='ply') writes the extracted point clouds to ply format.

SamplingFactor — Factor for subsampling point clouds
auto (default) | positive integer | vector of positive integers

Factor for subsampling point clouds in the ground truth data source, specified as one of these values:

• "auto" — If the input is a groundTruthLidar object or an array of groundTruthLidar
objects. The function samples data sources with timestamps, such as a point cloud sequence, with
a factor of 5, and 1 for a collection of point clouds. This is the default value.

• positive integer — If the input is a groundTruthLidar object. Uniform sampling factor is applied
to all the point cloud samples in the data source.

• vector of positive integers — If the input is an array of groundTruthLidar objects. The k th
element in the vector is applied as the sampling factor for data sources in the k th ground truth
object in the array.

For a sampling factor of N, the returned training data includes every Nth point cloud sample in the
ground truth data source. The function ignores ground truth samples with empty label data.

Use sampled data to reduce repeated data, such as a sequence of point clouds with the same scene
and labels. It can also help in reducing training time.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

WriteLocation — Name of folder
pwd (current working folder) (default) | string scalar | character vector

Folder name to write extracted point cloud samples to, specified as a string scalar or character
vector. The specified folder must exist and have write permissions.

Use this name-value argument only if the data source in the groundTruthLidar object is a
VelodyneLidarSource, LasFileSequenceSource, CustomPointCloudSource, or
RosbagSource object. You can know this from the DataSource property of the groundTruthLidar
object. For other data sources, the lidarObjectDetectorTrainingData function ignores this
value, if specified.
Data Types: char | string

PointCloudFormat — Point cloud file format
pcd (default) | character vector

Point cloud file format, specified as a character vector. File formats must be supported by pcwrite.
By default, the function writes the point cloud to pcd format.

Use this name-value argument only if the data source in the groundTruthLidar object is a
VelodyneLidarSource, LasFileSequenceSource, CustomPointCloudSource, or
RosbagSource object. You can know this from the DataSource property of the groundTruthLidar
object. For other data sources, the lidarObjectDetectorTrainingData function ignores this
value, if specified.
Data Types: char

NamePrefix — Prefix for output point cloud file names
string scalar | character vector

3 Functions

3-240

Prefix for output point cloud file names, specified as a string scalar or character vector. The point
cloud files are named as:

<source_name><source_number>_<pointcloud_number>.<pointcloud_format>

The NamePrefix parameter sets the value for <source_name>. By default, the <source_name> is
the name of the data source from which the point clouds are extracted. <source_name>

Use this name-value argument only if the data source in the groundTruthLidar object is a
VelodyneLidarSource, LasFileSequenceSource, CustomPointCloudSource, or
RosbagSource object. You can know this from the DataSource property of the groundTruthLidar
object. For other data sources, the lidarObjectDetectorTrainingData function ignores this
value, if specified.
Data Types: char | string

Verbose — Flag to display writing progress
true or 1 (default) | false or 0

Flag to display writing progress in the MATLAB command window, specified as one of these values:

• true or 1 — Displays information about the write progress.
• false or 0 — Does not display information about the write progress.

Use this name-value argument only if the data source in the groundTruthLidar object is a
VelodyneLidarSource, LasFileSequenceSource, CustomPointCloudSource, or
RosbagSource object. You can know this from the DataSource property of the groundTruthLidar
object. For other data sources, the lidarObjectDetectorTrainingData function ignores this
value, if specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
trainingData — Labeled data for training the network
table

Labeled data for training the network, returned as a table with two or more columns. The first
column of the table contains point cloud file names with paths. Each of the remaining columns
correspond to a cuboid ROI label and contains the locations of bounding boxes in the point cloud
sample (specified in the first column), for that label. The bounding boxes are specified as a

M-by-9 numeric matrix with rows of the form [xctr, yctr, zctr, xlen, ylen, zlen, xrot,
yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-axis, y-axis, and z-axis,

respectively, before rotation has been applied.
• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-axis, y-axis, and z-

axis, respectively. These angles are clockwise-positive when looking in the forward direction of
their corresponding axes.

 lidarObjectDetectorTrainingData

3-241

The figure shows how these values determine the position of a cuboid.

Data Types: table

ptds — Extracted point cloud data
fileDatastore object

Extracted point cloud data, returned as a fileDatastore object. The point cloud data must contain
at least one class label. The function ignores unlabelled point cloud data.

blds — Extracted ROI labels
boxlabelDatastore object

Extracted ROI labels, returned as a boxLabelDatastore object. The datastore contains M-by-9
matrices of M bounding boxes and categorical vectors of cuboid ROI label names.

The bounding boxes are specified as a

M-by-9 numeric matrix with rows of the form [xctr, yctr, zctr, xlen, ylen, zlen, xrot,
yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-axis, y-axis, and z-axis,

respectively, before rotation has been applied.
• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-axis, y-axis, and z-

axis, respectively. These angles are clockwise-positive when looking in the forward direction of
their corresponding axes.

The figure shows how these values determine the position of a cuboid.

3 Functions

3-242

Version History
Introduced in R2022a

See Also
groundTruthLidar | trainPointPillarsObjectDetector | boxLabelDatastore |
fileDatastore

 lidarObjectDetectorTrainingData

3-243

Blocks

4

Lidar Sensor
Generate lidar point cloud data for a scene

Libraries:
Lidar Toolbox

Description
The Lidar Sensor block generates point cloud data from the measurements recorded by a lidar sensor
mounted on an ego vehicle. The generated data is in the ego vehicle coordinate system.

To generate point cloud data for a scene, you can configure the sensor and actor poses by using this
block. The block also outputs the intensity and segmentation values for the generated points.

Additionally, you can use this block to

• configure the lidar sensor parameters such as range, azimuth angles, and elevation angles.
• add random Gaussian noise to the points in the point cloud.
• simulate weather conditions such as fog and rain.

You can use the drivingScenario object to create a scenario containing actors and trajectories,
import this data into Simulink® by using the Scenario Reader block and then generate the point cloud
data for the scenario by using the Lidar Sensor block.

Ports
Input

ActorPoses — Actor poses
Simulink bus containing MATLAB structure

Actor poses, specified as a Simulink bus containing MATLAB structure. The structure must contain
these two fields.

1 Target poses of the actors in the scene, specified as an L- element array of structures. Each
structure corresponds to an actor. L is the number of actors used.

You can generate this structure programmatically using the actorPoses function. You can also
create these structures manually. Each structure must contain these fields.

Field Description Value
ActorID Unique identifier for the

actor.
Positive scalar

Position Position of the actor with
respect to the ego vehicle
coordinate system, in meters.

Three-element vector of the
form [x y z]

4 Blocks

4-2

Field Description Value
Velocity Velocity (V) of the actor, in

meters per second, along the
x-, y-, and z- directions.

Three-element vector of the
form [Vx Vy Vz]

Roll Roll angle of the actor in
degrees.

Numeric scalar

Pitch Pitch angle of the actor in
degrees.

Numeric scalar

Yaw Yaw angle of the actor in
degrees.

Numeric scalar

AngularVelocity Angular velocity (ω) of the
actor, in degrees per second,
along the x-, y-, and z-
directions.

Three-element vector of the
form [ωx ωy ωz]

2 Simulation time for generating new point clouds, specified as a positive scalar.

You can output the scene actors poses from a Scenario Reader block.

Output

IsValid — Valid simulation time
0 | 1

Valid simulation time, returned as a logical 0 (false) or 1 (true). This value is 0 for the updates
requested at times between the update interval specified by the Required interval between sensor
updates (s) parameter.
Data Types: Boolean

Location — Location values of points
M-by-N-by-3 matrix

Location values of points in the point cloud, returned as an M-by-N-by-3 matrix. M, N are the number
of rows and columns in the organized point cloud, respectively.

Intensity — Intensity values of points
M-by-N matrix

Intensity values of points in the point cloud, returned as an M-by-N matrix. M, N are the number of
rows and columns in the organized point cloud, respectively.

Clusters — Classification data of actors
M-by-N-by-2 matrix

Classification data of actors in the scene, returned as an M-by-N-by-2 matrix. The first column
contains the ActorIDs and the second column contains the ClassIDs of the target actors.M, N are
the number of rows and columns in the organized point cloud, respectively.

 Lidar Sensor

4-3

Parameters
Parameters
Sensor Identification

Unique identifier of sensor — Unique sensor identifier

1 (default) | positive integer

Unique identifier for the sensor, specified as a positive integer. In a multisensor system, this index
distinguishes different sensors from one another.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Required interval between sensor updates (s) — Required time interval between sensor updates

0.1 (default) | positive scalar

Time interval between two consecutive sensor updates, specified as a positive scalar. The block
generates new detections at the interval specified by this parameter. The value must be an integer
multiple of the simulation time. Updates requested from the sensor in between the update intervals
contain no detections. Units are in seconds.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Sensor Mounting

Position [X Y Height] (m) — Sensor center position

[1.5 0 1.6] (default) | three-element vector of form [X Y Height]

Sensor center position, specified as a three-element vector of the form [X Y Height]. The values of X
and Y represent the location of the sensor center with respect to the X- and Y-axes of the ego vehicle
coordinate system. Height is the height of the sensor above the ground. The default value defines a
lidar sensor mounted on the front edge of the roof of a sedan. Units are in meters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Orientation [Roll Pitch Yaw] (deg) — Sensor orientation

[0 0 0] (default) | three-element vector

Sensor orientation, specified as a three-element vector of the form, [Roll Pitch Yaw]. These values are
with respect to the ego vehicle coordinate system. Units are in degrees.

• Roll — The roll angle is the angle of rotation around the front-to-back axis, which is the x-axis of
the ego vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when
looking in the positive direction of the x-axis.

• Pitch — The pitch angle is the angle of rotation around the side-to-side axis, which is the y-axis of
the ego vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when
looking in the positive direction of the y-axis.

• Yaw — The yaw angle is the angle of rotation around the vertical axis,which is the z-axis of the ego
vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when looking
in the positive direction of the z-axis. This rotation appears counter-clockwise when viewing the
vehicle from above.

4 Blocks

4-4

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Actor Profiles

MATLAB or Model workspace Actor profiles variable name — Variable name for actor profiles

actor_profiles (default) | valid variable name

Variable name for actor profiles, specified as the name of a MATLAB or model workspace variable
containing actor profiles.

Actor profiles are the physical characteristics of the actors in the scene, specified as a structure or as
an L-element array of structures. L is the number of actors in the scene.

If the actor profiles variable has a single structure, then all actors specified at the ActorPoses input
port use the same profile.

To generate an array of actor profile structures for your driving scenario drivingScenario, use the
actorProfiles function. You can also create these structures manually. This table shows the valid
structure fields.

Field Description Value
ActorID Unique identifier for the actor.

In a scene with multiple actors,
this value distinguishes different
actors from one another.

Positive integer

ClassID User-defined classification ID
for the actor.

ClassID Class Name
1 Car
2 Truck
3 Bicycle
4 Pedestrian
5 Jersey Barrier
6 Guardrail

Positive scalar

Length Length of the actor in meters. Positive scalar
Width Width of the actor in meters. Positive scalar
Height Height of the actor in meters. Positive scalar
OriginOffset Offset of the rotational center of

the actor from its geometric
center. The rotational center, or
origin, is located at the bottom
center of the actor. For vehicles,
the rotational center is the point
on the ground beneath the
center of the rear axle.

A three-element vector of the
form [x y z]. Units are in
meters.

 Lidar Sensor

4-5

Field Description Value
MeshVertices Vertices of the actor in mesh

representation.
N-by-3 numeric matrix, where
each row defines a vertex in 3-D
space.

MeshFaces Face of the actor in mesh
representation.

M-by-3 integer matrix, where
each row represents a triangle
defined by vertex IDs, which are
the row numbers of
MeshVertices.

MeshTargetReflectances Material reflectance for each
triangular face of the actor.

M-by-1 numeric vector, where M
is the number of triangle faces
of the actor. Each value must be
in the range [0, 1].

For more information about these structure fields, see the actor and vehicle functions.

ActorID of the host vehicle — Actor ID of ego vehicle

1 (default) | positive integer

ActorID value of the ego vehicle, specified as a positive integer. ActorID is the unique identifier for
an actor. This parameter must be a valid ActorID specified at the ActorPoses input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Sensor FOV

Settings

Maximum detection range of sensor (m) — Maximum detection range

120 (default) | positive scalar

Maximum detection range of the sensor specified as a positive scalar. The sensor cannot scan for the
points beyond this range. Units are in meters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Azimuth limits (deg) — Azimuth limits of lidar sensor

[-180 180] (default) | two-element vector

Azimuth limits of the lidar sensor, specified as a two-element vector of the form [min max]. The values
must be in the range [-180, 180], max must be greater than min. Units are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Azimuth resolution (deg) — Azimuthal resolution of lidar sensor

0.16 (default) | positive scalar

Azimuthal resolution of the lidar sensor, specified as a positive scalar. Units are in degrees.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 Blocks

4-6

Use custom elevation angles — Use custom elevation angles

off (default) | on

Select this parameter to use custom elevation angles.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Custom elevation angles (deg) — Elevation angles of lidar sensor

N-element real-valued vector

Custom elevation angles of the lidar sensor, specified as an N-element real-valued vector. N is the
number of elevation channels. The elements of the vector must be in the increasing order. Units are
in degrees.

Dependencies

To enable this parameter, select the Use custom elevation angles parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Elevation limits (deg) — Elevation limits of lidar sensor

[-20 20] (default) | two element vector of form [min, max]

Elevation limits of the lidar sensor, specified as a two-element vector of the form [min max]. The
values must be in the range [-180, 180], max must be greater than min. Units are in degrees.

Note The block disables this parameter, when you select the Use custom elevation angles
parameter.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Elevation resolution (deg) — Elevation resolution of lidar sensor

1.25 (default) | positive scalar

Elevation resolution of the lidar sensor, specified as a positive scalar in degrees.

Note The block disables this parameter, when you select the Use custom elevation angles
parameter.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Advance Settings

Noise Simulation

Add noise to measurements — Add noise to measurements

on (default) | off

 Lidar Sensor

4-7

When you select this parameter, the block adds random Gaussian noise to each point in the point
cloud using the Range accuracy (m) parameter as one standard deviation. Otherwise, the data has
no noise.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Range accuracy (m) — Accuracy of sensor range measurement

0.002 (default) | positive scalar

Accuracy of the sensor range measurement, specified as a positive scalar. Units are in meters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Weather Simulation

Fog visibility in meters — Visible distance in fog

1000 (default) | positive scalar

Visible distance in fog, specified as a positive scalar, in meters. The value of this parameter must not
be greater than 1000. A higher value indicates a better visibility and a lower fog impact. The default
value of 1000 indicates clear visibility, or no fog.

Note When you specify both Fog visibility in meters and Rainrate in mm/hour parameters, the
block simulates only the foggy weather.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Rainrate in mm/hour — Rate of rainfall

0 (default) | positive scalar

Rate of rainfall, specified as a positive scalar in millimeter per hour. The value of this parameter must
not be greater than 200. Increasing this value increases the impact of rain on the generated point
cloud. The default value is 0, indicating no rainfall.

Note When you specify both Fog visibility in meters and Rainrate in mm/hour parameters, the
block simulates only the foggy weather.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Port Settings

Output intensity port — Output intensity values of points

on (default) | off

Select this parameter to enable the Intensity output port.

Output clusters port — Output segmentation values of points

4 Blocks

4-8

on (default) | off

Select this parameter to enable the Clusters output port.

Version History
Introduced in R2023a

See Also
Apps
Driving Scenario Designer | Lidar Viewer | Lidar Labeler

Blocks
Scenario Reader | Point Cloud Viewer

Functions
actorProfiles | actorPoses

Objects
lidarSensor | drivingScenario

Topics
“Coordinate Systems in Lidar Toolbox”
“Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors”

 Lidar Sensor

4-9

	Apps
	Lidar Labeler
	Lidar Camera Calibrator
	Lidar Viewer

	Objects
	hasCRSData
	readCRS
	readPointCloud
	e57FileReader
	pointCloudInputLayer
	removeDefects
	isWatertight
	isVertexManifold
	isSelfIntersecting
	isOrientable
	isEdgeManifold
	subdivide
	simplify
	crop
	computeNormals
	scale
	vertexCenter
	transform
	rotate
	translate
	removeFaces
	removeVertices
	addFaces
	addVertices
	surfaceMesh
	findPose
	show
	updateScanPoses
	poseGraph
	copy
	deleteLoopClosure
	addLoopClosure
	detectLoopClosure
	addScan
	lidarscanmap
	pcmaploam
	lidarSensor
	LOAMPoints
	downsampleLessPlanar
	transformPointsForward
	show
	eigenFeature
	pcmapsegmatch
	addView
	deleteSegments
	deleteView
	findPose
	findView
	hasView
	isInsideSubmap
	selectSubmap
	show
	updateMap
	cuboidModel
	findPointsInsideCuboid
	getCornerPoints
	plot
	groundTruthLidar
	changeFilePaths
	selectLabels
	selectLabelsByGroup
	selectLabelsByName
	selectLabelsByType
	ibeoLidarReader
	readMessages
	labelDefinitionCreatorLidar
	addAttribute
	addLabel
	create
	editAttributeDescription
	editGroupName
	editLabelDescription
	editLabelGroup
	info
	removeAttribute
	removeLabel
	vision.labeler.loading.MultiSignalSource
	vision.labeler.loading.PointCloudSequenceSource
	vision.labeler.loading.VelodyneLidarSource
	lidar.labeler.loading.LasFileSequenceSource
	lidar.labeler.loading.RosbagSource
	lidar.syncImageViewer.SyncImageViewer
	lidar.syncImageViewer.SyncImageViewer.close
	lidar.syncImageViewer.SyncImageViewer.dataSourceChangeListener
	lidar.syncImageViewer.SyncImageViewer.disconnect
	lidar.syncImageViewer.SyncImageViewer.frameChangeListener
	lidar.syncImageViewer.SyncImageViewer.updateLabelerCurrentTime
	lasFileReader
	readPointCloud
	readCRS
	readVLR
	hasCRSData
	hasGPSData
	hasNearIRData
	hasWaveformData
	lidarScan
	plot
	removeInvalidData
	rangeSensor
	lidar.labeler.loading.CustomPointCloudSource
	lidarParameters
	pointPillarsObjectDetector
	detect
	lidarPointAttributes
	blockedPointCloud
	apply
	blocksub2roi
	roi2blocksub
	write
	getRegion
	getBlock
	gather
	blockedPointCloudDatastore
	read
	readall
	hasdata
	partition
	lidar.blocked.Adapter
	lidar.blocked.InMemory
	lidar.blocked.LAS
	lidar.blocked.LASBlocks
	lidar.blocked.MATBlocks
	lidar.blocked.Adapter.close
	lidar.blocked.Adapter.getInfo
	lidar.blocked.Adapter.getRegion
	lidar.blocked.Adapter.openInParallelToAppend
	lidar.blocked.Adapter.openToRead
	lidar.blocked.Adapter.openToWrite
	lidar.blocked.Adapter.setRegion
	lidar.labeler.AutomationAlgorithm
	checkLabelDefinition
	checkSetup
	checkSignalType
	initialize
	run
	settingsDialog
	supportsMultisignalAutomation
	terminate
	lidar.labeler.mixin.Temporal
	supportsReverseAutomation
	lidarLabelType
	lasFileWriter
	writePointCloud
	addVLR
	ousterFileReader
	hasFrame
	readFrame
	reset
	hesaiFileReader
	hasFrame
	readFrame
	reset

	Functions
	removeHiddenPoints
	undistortEgoMotion
	clusterConnectedFaces
	smoothSurfaceMesh
	pcsemanticseg
	segmentAerialLidarBuildings
	segmentAerialLidarVegetation
	pcregisterfgr
	surfaceMeshShow
	readSurfaceMesh
	writeSurfaceMesh
	pc2surfacemesh
	segmentCurbPoints
	detectRoadAngles
	show
	findPose
	addPoints
	pcregisterloam
	detectLOAMFeatures
	extractEigenFeatures
	pcfitcuboid
	extractFPFHFeatures
	pcmedian
	estimateCheckerboardCorners3d
	detectRectangularPlanePoints
	estimateLidarCameraTransform
	projectLidarPointsOnImage
	fuseCameraToLidar
	bboxCameraToLidar
	pcmatchfeatures
	pcshowMatchedFeatures
	squeezesegv2Layers
	matchScans
	matchScansGrid
	matchScansLine
	bboxLidarToCamera
	segmentGroundSMRF
	transformScan
	pcorganize
	pc2dem
	trainPointPillarsObjectDetector
	pointnetplusLayers
	detectISSFeatures
	pc2scan
	sampleLidarData
	pcBboxOversample
	lidarObjectDetectorTrainingData

	Blocks
	Lidar Sensor

